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Abstract. We theoretically discuss why deep neural networks (DNNs) performs better than
other models in some cases by investigating statistical properties of DNNs for non-smooth
functions. While DNNs have empirically shown higher performance than other standard
methods, understanding its mechanism is still a challenging problem. From an aspect of the
statistical theory, it is known many standard methods attain optimal convergence rates, and
thus it has been difficult to find theoretical advantages of DNNs. This paper fills this gap by
considering learning of a certain class of non-smooth functions, which was not covered by the
previous theory. We derive convergence rates of estimators by DNNs with a ReLU activation,
and show that the estimators by DNNs are almost optimal to estimate the non-smooth
functions, while some of the popular models do not attain the optimal rate. In addition, our
theoretical result provides guidelines for selecting an appropriate number of layers and edges
of DNNs. We provide numerical experiments to support the theoretical results.

1. Introduction

Deep neural networks (DNNs) have shown outstanding performance on various tasks of
data analysis (Schmidhuber, 2015; LeCun et al., 2015). Enjoying their flexible modeling by a
multi-layer structure and many elaborate computational and optimization techniques, DNNs
empirically achieve higher accuracy than many other machine learning methods such as kernel
methods (Hinton et al., 2006; Le et al., 2011; Kingma and Ba, 2014). Hence, DNNs are
employed in many successful applications, such as image analysis (He et al., 2016), medical
data analysis (Fakoor et al., 2013), natural language processing (Collobert and Weston, 2008),
and others.

Despite such outstanding performance of DNNs, little is yet known why DNNs outperform
the other methods. Without sufficient understanding, practical use of DNNs could be
inefficient or unreliable. To reveal the mechanism, numerous studies have investigated
theoretical properties of neural networks from various aspects. with approximation theory, the
expressive power of neural networks have been analyzed(Cybenko, 1989; Barron, 1993; Bengio
and Delalleau, 2011; Montufar et al., 2014; Yarotsky, 2017; Petersen and Voigtlaender, 2017),
statistics and learning theories have elucidated generalization errors (Barron, 1994; Neyshabur
et al., 2015; Schmidt-Hieber, 2017; Zhang et al., 2017; Suzuki, 2018), and optimization theory
has discussed the landscape of the objective function and dynamics of learning(Baldi and
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2 DNNS FOR NON-SMOOTH FUNCTIONS

Hornik, 1989; Fukumizu and Amari, 2000; Dauphin et al., 2014; Kawaguchi, 2016; Soudry
and Carmon, 2016).

One limitation in the existing statistical analysis of DNNs is a smoothness assumption for
data generating processes. It makes one of the reasons for difficulties, when we try to reveal
the advantage of DNNs. In the statistical theory, it is assumed that data are generated from
smooth (i.e. differentiable) functions, namely, data tpYi, Xiqu are given

Yi “ fpXiq ` ξi, ξi „ N p0, σ2
q,

where f is a β-times differentiable function with D-dimensional input. With this setting,
however, not only DNNs but also other popular methods (kernel methods, Gaussian processes,
series methods, and so on) achieve generalization errors bounded as

O
`

n´2β{p2β`Dq
˘

,

which is known to be optimal in the minimax sense (Stone, 1982; Tsybakov, 2009; Giné and
Nickl, 2015). Hence, as long as we employ the smoothness assumption, it is not possible to
show a theoretical evidence for the empirical advantage of DNNs.

This paper considers learning of non-smooth functions for the data generating processes
to break the difficulty. We prove that DNNs certainly have a theoretical advantage under
the non-smooth setting. Specifically, we discuss a nonparametric regression problem with a
class of piecewise smooth functions which are non-smooth on boundaries of pieces in their
domains. Then, we derive convergence rates of least square and Bayes estimators by DNNs
with a ReLU activation as

O
`

max
 

n´2β{p2β`Dq, n´α{pα`D´1q
(˘

,

up to log factors (Theorems 1, 2, and Corollary 1). Here, α and β denote a degree of
smoothness of piecewise smooth functions, and D is the dimensionality of inputs. We prove
also that the convergence rate by DNNs is optimal in the minimax sense (Theorem 3). In
addition, we show that some of other popular methods, such as kernel methods and orthogonal
series methods with some specified bases, cannot estimate the piecewise smooth functions
with the optimal convergence rate (Proposition 1 and 2). Notably, in contrast to these models,
our result shows that DNNs with a ReLU achieve the optimal rate in estimating non-smooth
functions, although the DNN realizes smooth functions. We provide some numerical results
supporting our results.

Contributions of this paper are as follows:

‚ We derive the convergence rates of the estimators by DNNs for the class of piecewise
smooth functions. Our convergence results are more general than existing studies,
since the class is regarded as a generalization of smooth functions.

‚ We prove that DNNs theoretically outperform other standard methods for data from
non-smooth generating processes, as a consequence the proved convergence rates.

‚ We provide a practical guideline on the structure of DNNs; namely, we show a necessary
number of layers and parameters of DNNs to achieve the optimal convergence rate. It
is shown in Table 1.

All of the proofs are deferred to the supplementary material.
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Element Number

# of layers ď cp1`maxtβ{D,α{2pD ´ 1quq

# of parameters c1nmaxtD{p2β`Dq,p2D´2q{p2α`2D´2qu

Table 1. Architecture for DNNs which are necessary to achieve the optimal
convergence rate. c, c1 ą 0 are some constants.

1.1. Notation. We use notations I :“ r0, 1s and N for natural numbers. The j-th element
of vector b is denoted by bj, and } ¨ }q :“ p

ř

j b
q
jq

1{q is the q-norm (q P r0,8s). vecp¨q is

a vectorization operator for matrices. For z P N, rzs :“ t1, 2, . . . , zu is the set of positive
integers no more than z. For a measure P on I and a function f : I Ñ R, }f}L2pP q :“

p
ş

I
|fpxq|2dP pxqq1{2 denotes the L2pP q norm. b denotes a tensor product, and

Â

jPrJs xj :“

x1 b ¨ ¨ ¨ b xJ for a sequence txjujPrJs.

2. Regression with Non-Smooth Functions

We formulate a regression problem when a function for generating data is non-smooth.
Firstly, we summarize a brief outline of the regression problem, and secondly, we introduce a
class of non-smooth functions.

2.1. Regression Problem. In this paper, we use the D-dimensional cube ID (D ě 2) for
the domain of data. Suppose we have a set of observations pXi, Yiq P I

D ˆR for i P rns which
is independently and identically distributed with the data generating process

Yi “ f˚pXiq ` ξi, (1)

where f˚ : ID Ñ R is an unknown true function and ξi is Gaussian noise with mean 0 and
variance σ2 ą 0 for i P rns. We assume that the marginal distribution of X on ID has a
positive and bounded density function PXpxq.

The goal of the regression problem is to estimate f˚ from the set of observations Dn :“

tpXi, YiquiPrns. With an estimator pf , its performance is measured by the L2pPXq norm:

} pf ´ f˚}2L2pPXq
“ EX

”

p pfpXq ´ f˚pXqq2
ı

.

There are various methods to estimate f˚ and their statistical properties are extensively
investigated (For summary, see Wasserman (2006) and Tsybakov (2009)).

A classification problem can be also analyzed through the regression framework. For
instance, consider a Q-classes classification problem with covariates Xi and labels Zi P rQs
for i P rns. To describe the classification problem, we consider a Q-dimensional vector-valued
function f˚pxq “ pf˚1 pxq, ..., f

˚
Qpxqq and a generative model for Zi as

Zi “ argmax
qPrQs

f˚q pXiq.

Here, estimating f˚ can solve the classification problem. (For summary, see Steinwart and
Christmann (2008)).
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2.2. Piecewise Smooth Functions. To describe non-smoothness of functions, we introduce
a notion of piecewise smooth functions which have a support divided into several pieces
and smooth only within each of the pieces. On boundaries of the pieces, piecewise smooth
functions are non-smooth, i.e. non-differentiable and even discontinuous. Figure 1 shows an
example of piecewise smooth functions.

Figure 1. An example of piecewise smooth functions with a 2-dimensional
input. The support r0, 1s2 is divided into three pieces and the function fpx1, x2q

is non-smooth (also discontinuous) on boundaries of the pieces.

As preparation, we introduce notions of (i) smooth functions and (ii) pieces in supports.
Afterwards, we combine them and provide the notion of (iii) piecewise smooth functions.

(i). Smooth Functions
We introduce the Hölder space to describe smooth functions. With a parameter β ą 0, the

Hölder norm for f : ID Ñ R is defined as

}f}Hβ :“ max
|a|ďtβu

sup
xPID

|B
afpxq| ` max

|a|“tβu
sup

x,x1PID,x‰x1

|Bafpxq ´ Bafpx1q|

|x´ x1|β´tβu
,

where a denotes a multi-index of differentiation and Ba denotes a partial derivative. Then,
the Hölder space Hβ on ID is defined as

Hβ :“ tf : ID Ñ R | }f}Hβ ă 8u.

Intuitively, Hβ contains functions such that they are tβu-times differentiable and the tβu-th
derivatives are β ´ tβu-Hölder continuous.

The Hölder space is popularly used for representing smooth functions, and many statistical
methods can effectively estimate functions in the Hölder space. (For summary, see Giné and
Nickl (2015).)

(ii). Pieces in Supports
To describe pieces in supports, we introduce an extended notion of a boundary fragment

class which is developed by Dudley (1974) and Mammen et al. (1999).
Preliminarily, we consider a sphere SD´1 :“ tx P RD : }x}2 “ 1u in RD and its center

is the origin. With J P N, let tVju
J
j“1 be sets in SD´1 such as

Ť

jPrJs clpVjq “ SD´1 and

Vj X Vj1 “ H, @j ‰ j1, j, j1 P rJs.
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We provide a notion of boundaries of a piece in RD using tVjujPrJs. Let S̄D´1 :“ tx P
r´1, 1sD : }x}2 ă 1u be an open ball in RD, and Fj : S̄D´1 Ñ Vj be a C8 surjective function
for j P rJs. With a parameter α ě 1, let Gα,J be the set of boundaries, defined by

Gα,J :“

"

pg1, ..., gDq | injective, gd : SD´1
Ñ I, gd ˝ Fj P H

α
pS̄D´1

q, j P rJs, d P rDs,

*

,

where HαpS̄D´1q denotes the Hölder space of smooth functions on S̄D´1. Intuitively, bound-
aries g “ pg1, ..., gDq is tαu-times differentiable expect at frontier points of Vj.

Given g P Gα,J as the boundary of a piece, we define Intpgq as the interior of g P Gα,J
(detailed definition is provided by Dudley (1974)). At last, we define Rα,J as a set of pieces
in ID such as

Rα,J :“ tIntpgq : g P Gα,Ju .

Figure 2 shows a brief example.

Figure 2. An example of pieces with D “ 2 and J “ 3. The top figure is a
circle, and the middle figure is a boundary is obtained by reshaping the circle
and it is smooth except the frontier points of Vj (the red dots). The bottom
figure is the piece as Intpgq. The interior is shown as the blue area.

We mention that Rα,J can describe a wide range of pieces (Dudley, 1974): Rα,J with α “ 2
is dense in a set of all convex sets in ID.

(iii). Piecewise Smooth Functions
Using Hβ and Rα,J , we define piecewise smooth functions. Let M P N be a number of

pieces of the support ID. With a piece R Ă ID, let 1R : ID Ñ t0, 1u be the indicator function
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such that

1Rpxq “

#

1, if x P R,

0, if x R R.

We define a set of piecewise smooth functions as

FM,J,α,β “

#

M
ÿ

m“1

fm b 1Rm : fm P H
β, Rm P Rα,J

+

.

Since fmpxq realizes only when x P Rm, the notion of FM,J,α,β can express a combination of
smooth functions on each piece Rm. Hence, functions in FM,J,α,β are non-smooth (and even
discontinuous) on boundaries of Rm. Obviously, Hβ Ă FM,J,α,β with M “ 1 and R1 “ ID,
hence the notion of piecewise smooth functions can describe a wider class of functions.

3. Analysis for Estimation by DNNs

In this section, we provide estimators for the regression problem by DNNs and derive
their theoretical properties. Firstly, we define a statistical model by DNNs. Afterwards, we
investigate two estimators by DNNs; a least square estimator and a Bayes-estimator.

3.1. Models by Deep Neural Networks. Let L P N be the number of layers in DNNs.
For ` P rL` 1s, let D` P N be the dimensionality of variables in the `-th layer. For brevity,
we set DL`1 “ 1, i.e., the output is one-dimensional. We define A` P RD``1ˆD` and b` P RD`

be matrix and vector parameters to give the transform of `-th layer. The architecture Θ of
DNN is a set of L pairs of pA`, b`q:

Θ :“ ppA1, b1q, ..., pAL, bLqq.

We define |Θ| :“ L be a number of layers in Θ, }Θ}0 :“
ř

`PrLs } vecpA`q}0 ` }b`}0 as a number

of non-zero elements in Θ, and }Θ}8 :“ maxtmax`PrLs } vecpA`q}8,max`PrLs }b`}8u be the
largest absolute value of the parameters in Θ.

For an activation function η : RD1 Ñ RD1 for each D1 P N, this paper considers the ReLU
activation ηpxq “ pmaxtxd, 0uqdPrD1s.

The model of neural networks with architecture Θ and activation η is the function GηrΘs :
RD1 Ñ R, which is defined inductively as

GηrΘspxq “ xpL`1q,

with

xp1q :“ x,

xp``1q :“ ηpA`x
p`q
` b`q, for ` P rLs,

where L “ |Θ| is the number of layers. The set of model functions by DNNs is thus given by

FNN,ηpS,B, L
1
q :“

!

GηrΘs : ID Ñ R | }Θ}0 ď S, }Θ}8 ď B, |Θ| ď L1
)

,

with S P N, B ą 0, and L1 P N. Here, S bounds the number of non-zero parameters of DNNs
by Θ, namely, the number of edges of an architecture in the networks. This also describes
sparseness of DNNs. B is a bound for scales of parameters.
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3.2. Least Square Estimator. Using the model of DNNs, we define a least square estimator
by empirical risk minimization. Using the observations Dn, we consider the minimization
problem with respect to parameters of DNNs as

pfL P argmin
fPFNN,ηpS,B,Lq

1

n

ÿ

iPrns

pYi ´ fpXiqq
2, (2)

and use pfL for an estimator of f˚.
Note that the problem (2) has at least one minimizer since the parameter set Θ is compact

and η is continuous. If necessary, we can add a regularization term for the problem (2), because
it is not difficult to extend our results to an estimator with regularization. Furthermore, we
can apply the early stopping techniques, since they play a role as the regularization (LeCun
et al., 2015). However, for simplicity, we confine our arguments of this paper in the least
square.

We investigate theoretical aspects of convergence properties of pfL with a ReLU activation.

Theorem 1. Suppose f˚ P FM,J,α,β. Then, there exist constants c1, c
1
1, CL ą 0, s P Nzt1u,

and pS,B, Lq satisfying

(i) S “ c11 maxtnD{p2β`Dq, np2D´2q{p2α`2D´2qu,
(ii) B ě c1n

s,
(iii) L ď c1p1`maxtβ{D,α{2pD ´ 1quq,

such that pfL P FNN,ηpS,B, Lq provides

} pfL ´ f˚}2L2pPXq
ď CL maxtn´2β{p2β`Dq, n´α{pα`D´1q

u log n, (3)

with probability at least 1´ c1n
´2.

Proof of Theorem 1 is a combination of a set estimation (Dudley, 1974; Mammen and Tsy-
bakov, 1995), an approximation theory of DNNs (Yarotsky, 2017; Petersen and Voigtlaender,
2017), and an applications of the empirical process techniques (Koltchinskii, 2006; Giné and
Nickl, 2015; Suzuki, 2018).

The convergence rate in Theorem 1 is simply interpreted as follows. The first term
n´2β{p2β`Dq describes an effect of estimating fm P H

β for m P rM s. The rate corresponds
to the minimax optimal rate for estimating smooth functions in Hβ (For a summary, see
Tsybakov (2009)). The second term n´α{pα`D´1q reveals an effect from estimation of 1Rm
for m P rM s through estimating the boundaries of Rm P Rα,J . The same convergence rate
appears in a problem for estimating sets with smooth boundaries (Mammen and Tsybakov,
1995).

We remark that a larger number of layers decreases B. Considering the result by Bartlett
(1998), which shows that large values of parameters make the performance of DNNs worse,
the above theoretical result suggests that a deep structure can avoid the performance loss
caused by large parameters.

We also mention that our theoretical result is independent of the non-convex optimization
problem. Suppose an optimization method fails to obtain the minimizer, i.e. we obtain a

solution qf P FNN,ηpS,B, Lq such that ∆ “ n´1
ř

iPrnspYi ´
qfpXiqq

2 ´ pYi ´ pfpXiqq
2 with an
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error ∆ ą 0. Then, an error of qf is evaluated as

Ef˚
”

} qf ´ f˚}2L2pPXq

ı

ď CL maxtn´2β{p2β`Dq, n´α{pα`D´1q
u log n`∆,

since we can evaluate the estimation error and the optimization error independently. Here,
Ef˚r¨s denotes an expectation with respect to the true distribution of pX, Y q. Thus, combining
the results on the magnitude of ∆ (e.g. Kawaguchi (2016)), we can evaluate the error in the
cases of non-convex optimization.

3.3. Bayes Estimator. We define a Bayes estimator for DNNs which can avoid the non-
convexity problem in optimization. Fix architecture Θ and FNN,ηpS,B, Lq with given S,B
and L. Then, a prior distribution for FNN,ηpS,B, Lq is defined through providing distributions

for the parameters contained in Θ. Let Π
pAq
` and Π

pbq
` be distributions of A` and b` as

A` „ Π
pAq
` , b` „ Π

pbq
`

for ` P rLs. We set Π
pAq
` and Π

pbq
` such that each of the S parameters of Θ is uniformly

distributed on r´B,Bs, and the other parameters degenerate at 0. Using these distributions,
we define a prior distribution ΠΘ on Θ by

ΠΘ :“
â

`PrLs

Π
pAq
` b Π

pbq
` .

Then, a prior distribution for f P FNN,ηpS,B, Lq is defined by

Πf pfq :“ ΠΘpΘ : GηrΘs “ fq.

We consider the posterior distribution for f . Since the noise ξi in (1) is Gaussian with its
variance σ2, the posterior distribution is given by

dΠf pf |Dnq “
expp´

ř

iPrnspYi ´ fpXiqq
2{σ2qdΠf pfq

ş

expp´
ř

iPrnspYi ´ f
1pXiqq

2{σ2qdΠf pf 1q
.

Note that we do not discuss computational issues of the Bayesian approach since the main
focus is a theoretical aspect. To solve the computational problems, see Hernández-Lobato
and Adams (2015) and others.

We provide theoretical analysis on the rate of contraction for the posterior distribution.
Same as the least square estimator cases, we consider a ReLU activation function.

Theorem 2. Suppose f˚ P FM,J,α,β. Then, there exist constants c2, c
1
2, CB ą 0, s P Nzt1u,

architecture Θ : }Θ}0 ď S, }Θ}8 ď B, |Θ| ď L satisfying following conditions:

(i) S “ c12 maxtnD{p2β`Dq, np2D´2q{p2α`2D´2qu,
(ii) B ě c2n

s,
(iii) L ď c2p1`maxtβ{D,α{2pD ´ 1quq,

and a prior distribution Πf , such that the posterior distribution Πf p¨|Dnq provides

Ef˚
”

Πf

´

f : }f ´ f˚}2L2pPXq
ě rCB ˆmaxtn´2β{p2β`Dq, n´α{pα`D´1q

u log n|Dn

¯ı

ď exp
`

´r2c2 maxtnD{p2β`Dq, npD´1q{pα`D´1q
u
˘

, (4)

for all r ą 0.
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To provide proof of Theorem 2, we additionally apply studies for statistical analysis for
Bayesian nonparametrics (van der Vaart and van Zanten, 2008, 2011).

Based on the result, we define a Bayes estimator as

pfB :“

ż

fdΠf pf |Dnq,

by the Bochner integral in L8pIDq. Then, we obtain the convergence rate of pfB by the
following corollary.

Corollary 1. With the same setting in Theorem 2, consider pfB. Then, we have

Ef˚
”

} pfB ´ f˚}2L2pPXq

ı

ď CB maxtn´2β{p2β`Dq, n´α{pα`D´1q
u log n.

This result states that the Bayes estimator can achieve the same convergence rate as
the least square estimator shown in Theorem 1. Since the Bayes estimator does not use
optimization, we can avoid the non-convex optimization problem, while the computation of
the posterior and mean are not straightforward.

4. Discussion: Why DNNs work better?

We discuss why DNNs work better than some other popular methods. Firstly, we show
that the convergence rates by DNNs in Theorem 1 and 2 are optimal for estimating a function
in the piecewise smooth function class. Secondly, we provide additional shreds of evidence
that other methods are not suitable for the piecewise smooth functions. At last, we add some
discussions.

4.1. Optimality of the DNN Estimators. We will show optimality of the convergence
rates by the DNN estimators in Theorem 1 and Corollary 1. To this end, we employ a theory
of minimax optimal rate which is known in the field of mathematical statistics (Giné and Nickl,
2015). The theory derives a lower bound of a convergence rate with arbitrary estimators, thus
we can obtain a theoretical limitation of convergence rates.

The result of the minimax optimal rate for the class of piecewise smooth functions FM,J,α,β

is shown in the following theorem.

Theorem 3. Consider f̄ is an arbitrary estimator for f˚ P FM,J,α,β. Then, there exists a
constant Cmm ą 0 such that

inf
f̄

sup
f˚PFM,J,α,β

Ef˚
”

}f̄ ´ f˚}2L2pPXq

ı

ě Cmm max
 

n´2β{p2β`Dq, n´α{pα`D´1q
(

.

Proof of Theorem 3 employs techniques in the minimax theory developed by Yang and
Barron (1999) and Raskutti et al. (2012).

We show that the convergence rates by the estimators with DNNs are optimal in the
minimax sense, since the rates in Theorems 1 and 2 correspond to the lower bound of Theorem
3 up to a log factor. In other words, for estimating f˚ P FM,J,α,β, no other methods could
achieve a better convergence rate than the estimators by DNNs.
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4.2. Inefficiency of Other Methods. We consider kernel methods and orthogonal series
methods as representatives of other standard methods, then show that these methods are not
optimal for estimating piecewise smooth functions.

Kernel methods are popular to estimate functions in the field of machine learning (Rasmussen
and Williams, 2006; Steinwart and Christmann, 2008). Also, it is well known that theoretical
aspects of kernel methods are equivalent to that of the Gaussian process regression (van der
Vaart and van Zanten, 2008). An estimator by the kernel method is defined as

pfKpxq :“ argmin
fPHK

1

n

ÿ

iPrns

pYi ´ fpXiqq
2
` µ}f}2HK

,

where K : IDˆID Ñ R is a kernel function, HK is a reproducing kernel Hilbert space given by
K with its norm } ¨ }HK

, and µ ą 0 is a regularization coefficient as a hyper-parameter. Here,
we consider two standard kernel functions such as the Gaussian kernel and the polynomial

kernel. In the Gaussian kernel case, it is known that pfKpxq are optimal when f˚ P Hβ

(Steinwart and Christmann, 2008). We provide a theoretical result about pfKpxq for estimating
non-smooth functions.

Proposition 1. Fix D P Nzt1u,M, J P N, α ą 0 and β ą 0 arbitrary. Let pfKpxq be the kernel
estimator with the Gaussian kernel or the polynomial kernel. Then, there exists f˚ P FM,J,α,β

and a constant CK ą 0 such that

Ef˚
”

} pfK ´ f˚}2L2pPXq

ı

Ñ CK ,

as nÑ 8.

Since the kernel functions are not appropriate to express smooth structure of f˚, a set of
functions by the kernel functions do not contain some f˚ P FM,J,α,β. Although the Gaussian
kernel is universal kernel, i.e. the RKHS by the Gaussian kernel is dense in a class of continuous
functions, some f˚ P FM,J,α,β has a discontinuous structure, hence kernel methods with the
kernel functions cannot estimate f˚ P FM,J,α,β consistently. Similar properties hold for other
smooth kernel functions.

Orthogonal series methods, which is known as Fourier methods, estimate functions using an
orthonormal basis. It is one of the most fundamental methods for nonparametric regression
(For an introduction, see Section 1.7 in Tsybakov (2009)). Let φjpxq for j P N be an
orthonormal basis function in L2pPXq. An estimator for f˚ by the orthogonal series method
is defined as

pfSpxq :“
ÿ

jPrJs

pγjφjpxq,

where J P N is a hyper-parameter and pγj is a coefficient calculated as pγj :“ 1
n

ř

iPrns YiφjpXiq.

When the true function is smooth, i.e. f˚ P Hβ, pfS is known to be optimal in the minimax
sense (Tsybakov, 2009). About estimation for f˚ P FM,J,α,β, we can obtain the following
proposition.

Proposition 2. Fix D P Nzt1u,M, J P N, α ą 2 and β ą 1 arbitrary. Let pfS be the estimator
by the orthogonal series method. Suppose φj, j P N are the trigonometric basis or the Fourier
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basis. Then, with sufficient large n, there exist f˚ P FM,J,α,β, PX , a constant CF ą 0, and a
parameter

´κ ą maxt´2β{p2β `Dq,´α{pα `D ´ 1qu,

such that

Ef˚
”

} pfF ´ f˚}2L2pPXq

ı

ą CFn
´κ.

Proposition 2 shows that pfS can estimate f˚ P FM,J,α,β consistently since the orthogonal
basis in L2pPXq can reveal all square integrable functions. Its convergence rate is, however,
strictly worse than the optimal rate. Intuitively, the method requires many basis functions
to express the non-smooth structure of f˚ P FM,J,α,β, and a large number of bases increases
variance of the estimator, hence they lose efficiency.

4.3. Interpretation on Our Result. According to the results, we can see that the estimators
by DNNs have the theoretical advantage than the others for estimating f˚ P FM,J,α,β, since
the estimators by DNNs achieve the optimal convergence rate and the others do not.

We provide an intuition on why DNNs are optimal and the others are not. The most notable
fact is that DNNs can realize non-smooth functions with a small number of parameters, due
to activation functions and multi-layer structures. A combination of two ReLU functions can
approximate step functions, and a composition of the step functions in a combination of other
parts of the network can easily express smooth functions restricted to pieces. In contrast,
even though the other methods have the universal approximation property, they require a
larger number of parameters to represent non-smooth structures. By the statistical theory, a
larger number of parameters increases variance of estimators and worsens the performance,
hence the other methods lose the optimality.

About the inefficiency of the other methods, we do not claim that every statistical method
except DNNs misses the optimality for estimating piecewise smooth functions. Our argument
is the advantage of DNNs against the commonly used methods, such as the orthogonal series
methods and the kernel methods. There may exist some other models which can achieve the
optimality as DNNs, and this is an interesting future work.

An estimation using non-smooth kernels or basis functions is also an interesting direction.
While some studies have investigated properties in such situations(van Eeden, 1985; Wu and
Chu, 1993a,b; Wolpert et al., 2011; Imaizumi et al., 2018), these works focus on different
settings such as density estimation or univariate data analysis, hence their setting does not fit
problems discussed here.

5. Experiments

We carry out simple experiments to support our theoretical results.

5.1. Non-smooth Realization by DNNs. We show how the estimators by DNNs can
estimate non-smooth functions. To this end, we consider the following data generating process
with a piecewise linear function. Let D “ 2, ξ be an independent Gaussian variable with
a scale σ “ 0.5, and X be a uniform random variable on I2. Then, we generate n pairs of
pX, Y q from (1) with a true function f˚ as piecewise smooth function such that

f˚pxq “ 1R1pxqp0.2` x
2
1 ` 0.1x2q ` 1R2pxqp0.7` 0.01|4x1 ` 10x2 ´ 9|1.5q, (5)
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with a set R1 “ tpx1, x2q P I
2 : x2 ě ´0.6x1 ` 0.75u and R1 “ I2zR1. A plot of f in figure 3

shows its non-smooth structure.
About the estimation by DNNs, we employ the least square estimator (2). For the

architecture Θ of DNNs, we set |Θ| “ 4 and dimensionality of each of the layers as D1 “

2, D` “ 3 for ` P t2, 3, 4u, and D5 “ 1. We use a ReLU activation. To mitigate an effect of
the non-convex optimization problem, we employ 100 initial points which are generated from
the Gaussian distribution with an adjusted mean. We employ Adam (Kingma and Ba, 2014)
for optimization.

We generate data with a sample size n “ 100 f and obtain the least square estimator pfL for

f˚. Then, we plot pfL in Figure 4 which minimize an error from the 100 trials with different

initial points. We can observe that pfL succeeds in approximating the non-smooth structure
of f˚.

Figure 3. A plot for f˚. Figure 4. A plot for pfL.

5.2. Comparison with the Other Methods. We compare performances of the estimator
by DNNs, the orthogonal series method, and the kernel methods. About the estimator by
DNNs, we inherit the setting in Section 5.1. About the kernel methods, we employ estimators
by the Gaussian kernel and the polynomial kernel. A bandwidth of the Gaussian kernel is
selected from t0.01, 0.1, 0.2, ..., 2.0u and a degree of the polynomial kernel is selected from r5s.
Regularization coefficients of the estimators are selected from t0.01, 0.4, 0.8, ..., 2.0u. About
the orthogonal series method, we employ the trigonometric basis which is a variation of the
Fourier basis. All of the parameters are selected by a cross-validation.

We generate data from the process (1) with (5) with a sample size n P t100, 200, ..., 1500u
and measure the expected loss of the methods. In figure 5, we report a mean and standard
deviation of a logarithm of the loss by 100 replications. By the result, the estimator by
DNNs always outperforms the other estimators. The other methods cannot estimate the non-
smooth structure of f˚, although some of the other methods have the universal approximation
property.
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Figure 5. Comparison of a logarithm of the expected error by the methods.
Markers are means and bars are standard deviations of 100 replications. Red
circles denote a result by the estimator by DNNs, blue triangles are by the
kernel estimator with the Gaussian kernel, green triangles are by the kernel
estimator by the polynomial kernel, and purple squares are by the orthogonal
series estimator.

6. Conclusion and Future Work

In this paper, we have derived theoretical results that explain why DNNs outperform other
methods. To this goal, we considered a regression problem under the situation where the
true function is piecewise smooth. We focused on the least square and Bayes estimators, and
derived convergence rates of the estimators. Notably, we showed that the rates are optimal
in the minimax sense. Furthermore, we proved that the commonly used orthogonal series
methods and kernel methods are inefficient to estimate piecewise smooth functions, hence
we show that the estimators by DNNs work better than the other methods for non-smooth
functions. We also provided a guideline for selecting a number of layers and parameters of
DNNs based on the theoretical results.

Investigating selection for architecture of DNNs has remained as a future work. While our
results show the existence of an architecture of DNNs that achieves the optimal rate, we
did not discuss how to learn the optimal architecture from data effectively. Practically and
theoretically, this is obviously an important problem for analyzing a mechanism of DNNs.
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Appendix A. Proof of Theorem 1

We provide additional notation. λ denotes the Lebesgue measure. For a function f : ID Ñ R,
}f}L8 “ supxPID is a supremum norm. }f}L2 “ }f}L2pλq is a L2pλq-norm with the Lebesgue
measure.

With the set of observations, let } ¨ }n and be an empirical norm such as

}f}n “ n´1
n
ÿ

i“1

fpXiq.

Also, we define the empirical norm of random variables such as

}Y }n :“

¨

˝n´1
ÿ

iPrns

Y 2
i

˛

‚

1{2

and }ξ}n :“

¨

˝n´1
ÿ

iPrns

ξ2
i

˛

‚

1{2

.

With a set F and a radius ε ą 0, we introduce a covering number as

N pε,F , } ¨ }q :“ inf
!

N | tfjujPrNs, }f ´ fj} ď ε, @f P F
)

,

with a norm } ¨ }.
By the definition of the least square estimator (2), we obtain the following basic inequality

as

}Y ´ pfL}2n ď }Y ´ f}
2
n,

for all f P FNN,ηpS,B, Lq. Since we have Yi “ f˚pXiq ` ξi, we obtain

}f˚ ` ξ ´ pfL}2n ď }f
˚
` ξ ´ f}2n.

By the simple calculation, it yields

}f˚ ´ pfL}2n ď }f
˚
´ f}2n `

2

n

n
ÿ

i“1

ξip pf
L
pXiq ´ fpXiqq. (6)

In the following, we will fix f P FNN,ηpS,B, Lq and evaluate each of the terms each of
the terms of the RHS of (6) At the first subsection, we provide a result for approximating

f˚ P FM,J,α,β by DNNs. At the second subsection, we evaluate a variance of pfF . At the last
subsection, we combine the results and derive an overall convergence rate.

A.1. Approximate piecewise functions by DNNs. A purpose of this part is to bound
the following value

}f ´ f˚}L2pPXq,

with a properly selected f P FNN,ηpS,B, Lq. To this end, we consider an existing Θ with
properly selected S,B and L. Our proof of this part is obtained by extending a technique by
Yarotsky (2017) and Petersen and Voigtlaender (2017).

Fix f˚ P FM,J,α,β such that f˚ “
ř

mPrMs f
˚
m1R˚m with f˚m and R˚m for m P rM s. To

approximate f˚, we consider neural networks Θf,m and Θr,m for m P rM s, and their number
of layers and non-zero parameters will be specified later. We also consider a network Θ3
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which approximates a multiplication and a summation, i.e. GηrΘ3spx1, ..., xM , x
1
1, ..., x

1
Mq «

ř

mPrMs xmx
1
m.

We evaluate a distance between f˚ and a combined neural networkGηrΘ3spGηrΘ1sp¨q, GηrΘ2sp¨qq

as

}f˚ ´GηrΘ3spGηrΘf,1sp¨q, ..., GηrΘf,M sp¨q, GηrΘr,1sp¨q, ..., GηrΘr,M sp¨qq}L2

“

›

›

›

›

›

›

ÿ

mPrMs

f˚m1R˚m ´GηrΘ3spGηrΘf,1sp¨q, ..., GηrΘf,M sp¨q, GηrΘr,1sp¨q, ..., GηrΘr,M sp¨qq

›

›

›

›

›

›

L2

ď

›

›

›

›

›

›

ÿ

mPrMs

f˚m b 1R˚m ´
ÿ

mPrMs

GηrΘf,M s bGηrΘr,M s

›

›

›

›

›

›

L2

`

›

›

›

›

›

ÿ

mPrMs

GηrΘf,ms bGηrΘr,ms

´GηrΘ3spGηrΘf,1sp¨q, ..., GηrΘf,M sp¨q, GηrΘr,1sp¨q, ..., GηrΘr,M sp¨qq

›

›

›

›

›

L2

ď
ÿ

mPrMs

›

›f˚m b 1R˚m ´GηrΘf,ms bGηrΘr,ms
›

›

L2

`

›

›

›

›

›

ÿ

mPrMs

GηrΘf,ms bGηrΘr,ms

´GηrΘ3spGηrΘf,1sp¨q, ..., GηrΘf,M sp¨q, GηrΘr,1sp¨q, ..., GηrΘr,M sp¨qq

›

›

›

›

›

L2

ď
ÿ

mPrMs

}pf˚m ´GηrΘf,msq bGηrΘr,ms}L2 `
ÿ

mPrMs

›

›f˚m b p1R˚m ´GηrΘr,msq
›

›

L2

`

›

›

›

›

›

ÿ

mPrMs

GηrΘf,ms bGηrΘr,ms

´GηrΘ3spGηrΘf,1sp¨q, ..., GηrΘf,M sp¨q, GηrΘr,1sp¨q, ..., GηrΘr,M sp¨qq

›

›

›

›

›

L2

“:
ÿ

mPrMs

B1,m `
ÿ

mPrMs

B2,m `B3. (7)

We will bound Bm,1, Bm,2 for m P rM s and B3.
About the term B1,m for m P rM s, we apply the Cauchy-Schwartz inequality and obtain

›

›pf˚m ´GηrΘf,msq b 1R˚m
›

›

L2 ď }f
˚
m ´GηrΘf,ms}L2 }GηrΘr,ms}L2 .

By Theorem 1 in Yarotsky (2017) and Theorem A.8 in Petersen and Voigtlaender (2017), we
can assure that there exists a neural network Θf,m with }Θf,m}0 ď C 1fε

D{β, }Θf,m}L8 ď ε´2s

such that }f˚m ´GηrΘf,ms}L2 ă ε. About }GηrΘr,ms}L2 , we will employ a neural network
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in Lemma 3.4 in Petersen and Voigtlaender (2017) and use the result that the GηrΘr,ms is
uniformly bounded by 1. Hence,

}GηrΘr,ms}L2 ď

ˆ
ż

r0,1sD
1dλ

˙1{2

“ 1.

Combining the results, we obtain

B1,m ă ε.

For evaluating the term B2,m for m P rM s, we consider decomposition of Rm. As the same
discussion, we have

›

›f˚m b p1R˚m ´GηrΘr,msq
›

›

L2 ď }f
˚
m}L2

›

›1R˚m ´GηrΘr,ms
›

›

L2 .

Since f˚m P H
β, there exists a constant CH ą 0 such that }f˚m}L2 ď CH . We divide Rm into J

parts such as Rm,j, j P rJs. Also, we describe boundaries of Rm,j by 2J `Q horizon functions
with finite Q P N. Here, a horizon function h : r0, 1sD Ñ t0, 1u which is defined as

h “ Ψpx1 ` f
1
px2, ..., xDq, x2, ..., xDq,

where Ψ is the Heaviside function, i.e. Φpx1, ..., xDq :“ 1tx1ě0upx1, ..., xDq, and f 1 P Hαpr0, 1sD´1q.
We consider horizon functions hm,j,k for k P r2D `Qs and represent 1Rm,j by

ś

k hm,j,k. To
approximate the product of horizon functions, we consider that Θr,m is constructed by a
network for summation Θ`, for multiplication Θˆ and a network for horizon functions Θm,j,k.
The approximation error is written as

}1Rm ´GηrΘr,ms}L2

“

›

›

›

›

›

ÿ

jPrJs

1Rm,j

´GηrΘ`spGηrΘ
1
ˆspGηrΘm,1,1sp¨q, ...,

GηrΘm,1,2D`Ssp¨qq, ..., GηrΘˆspGηrΘm,J,1sp¨q, ..., GηrΘm,J,2D`Ssp¨qqq

›

›

›

›

›

L2

“

›

›

›

›

›

›

ÿ

jPrJs

1Rm,j ´
ÿ

jPrJs

GηrΘ
1
ˆspGηrΘm,j,1sp¨q, ..., GηrΘm,j,2D`Ssp¨qq

›

›

›

›

›

›

L2

ď
ÿ

jPrJs

›

›

›

›

›

›

ź

kPr2D`Ss

hm,j,k ´
ź

kPr2D`Ss

GηrΘm,j,ksp¨q

›

›

›

›

›

›

L2

`
ÿ

jPrJs

›

›

›

›

›

›

ź

kPr2D`Ss

GηrΘm,j,ksp¨q ´GηrΘ
1
ˆspGηrΘm,j,1sp¨q, ..., GηrΘm,j,2D`Ssp¨qq

›

›

›

›

›

›

L2

“:
ÿ

jPrJs

B2,m,j `
ÿ

jPrJs

B12,m,j.
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To evaluate B2,m,j, we apply Lemma 3.4 in Petersen and Voigtlaender (2017). By setting
Θm,j,k as Θh, hence we obtain 0 ď GηrΘm,j,kspxq ď 1. Thus, combining the fact 0 ď hm,j,kp¨q ď
1, we have

ź

kPr2D`Qs

hm,j,kp¨q ´
ź

kPr2D`Qs

GηrΘm,j,ksp¨q

“
ÿ

kPr2D`Qs

thm,j,kp¨q ´GηrΘm,j,ksp¨qu
ź

k1Prk´1s

hm,j,kp¨q
ź

k1PrKszrks

GηrΘm,j,ksp¨q

ď
ÿ

kPr2D`Qs

thm,j,kp¨q ´GηrΘm,j,ksp¨qu .

Then, we have

B2,m,j ď
ÿ

kPr2D`Qs

}hm,j,k ´GηrΘm,j,ks}L2 ď p2D `Qqε,

by applying Lemma 3.4 in Petersen and Voigtlaender (2017).
To evaluate B12,m,j, we apply Lemma 1 for multiple production.

Lemma 1. Fix η ą 0 arbitrary. Then, for each ε P p0, 1{2q, there exists a neural network
Θˆ1 for a D1-dimensional input with at most p1 ` log2D

1q{η layers such that }Θˆ1}0 ď

Cˆ1D
1ε´η, }Θˆ1}8 ď ε´2s with some constants Cˆ1 ą 0 and s P N, and it satisfies

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ź

dPrD1s

xd ´GηrΘˆ1spx1, ..., xD1q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď pD1 ´ 1qε.

Proof. We employ the neural network for multiplication Θˆ as Proposition 3 in Yarotsky
(2017) and Lemma A.2 in Petersen and Voigtlaender (2017) and consider a tree-shaped
multiplication network. There are D1 ´ 1 multiplication networks and the tree has 1` log2D

1

depth. �

Using the result, we set Θ1
ˆ and bound B12,m,j as

B12,m,j ď p2
D
`Q´ 1qε.

Combining the results about B2,m,j and B12,m,j, we obtain

B2,m ď 2Jp2D `Q´ 1{2qε.

About the term B3, we consider Lemma 2.

Lemma 2. Let η ą 0 be arbitrary. Then, for each ε P p0, 1{2q, there exists a neural network
Θ3 for a 2D1-dimensional input with at most 1` L layers where L ą 1{η and D1 ` CˆD

1ε´η

non-zero parameters such that }Θ3}8 ď ε´2s, and it satisfies
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

GηrΘ3spx1, ..., x2D1q ´
ÿ

dPrD1s

xdxD1`d

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď D1ε.
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Proof. Let us define the function by the neural network GηrΘ3s as

GηrΘ3spxq “ GηrΘ`spGηrΘˆspx1, xD1`1q, ..., GηrΘˆspxD1 , x2D1qq,

where Θˆ is defined in Proposition 3 in Yarotsky (2017) and Lemma A.2 in Petersen and
Voigtlaender (2017). Here, Θ` is a summation network such that

Θ` :“ pA, bq “

¨

˝

¨

˝

1
...
1

˛

‚, 0

˛

‚.

Then, we evaluate the difference as
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

GηrΘ3spx1, ..., x2D1q ´
ÿ

dPrD1s

xdx2d

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

dPrD1s

GηrΘˆspxd, xD1`dq ´
ÿ

dPrD1s

xdxD1`d

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

dPrD1s

|GηrΘˆspxd, xD1`dq ´ xdxD1`d|

ď D1ε.

Here, the last inequality follows Proposition 3 in Yarotsky (2017).
�

Let Θ3 be the neural network defined in the statement, then we obtain that

B3 ď 2Mε.

We combine the result about B1,m, B2,m and B3, then define f P FNN,ηpS,B, Lq for approx-
imating f˚. About Θ1, it contains Θf,m for m P rM s, thus we known }Θ1}0 ď C 1fMεD{β. Here,

we set ε “ c1n
´β{p2β`Dq with a constant c1, thus we conclude }Θ1}0 ď C 1fc1MnD{p2β`Dq and

}Θ1}8 ď c´2sn2sβ{p2β`Dq. About Θ2, it contains ΘΘm,j,k for m P rM s, J P rJs, k P r2D ` Qs,

Θ` and Θ1
ˆ. Hence, we know }Θ2}0 ď MJp2D ` Qqpε´2pD´1q{α ` C 1ˆε

´ηq ` MJ . We set

ε “ c2n
´α{p2α`2D´2q with c2 and η “ 2pD ´ 1q{α, then we have }Θ2}0 ď c2MJp2D `Qqp1`

2C 1ˆqn
2pD´1q{p2α`2D´2q `MJ and }Θ2}8 ď c2n

2sα{p2α`2D´2q. About Θ3, we already define it
in Lemma 2 such that Θ3 has 1` L layer with L ą 1{η and }Θ3}0 “ 2Mp1` Cˆε

´ηq. Then,
we set η “ maxt2pD ´ 1q{α,D{βu and ε “ c3 maxtn´β{p2β`Dq, n´α{p2α`2D´2qu with c3 ą 0.

We combine Θ1,Θ2 and Θ3 as a unified neural network 9Θ. Here, we know that the number
of layers is at most

Cslp1` rlog2p1` βqsqp1` β{Dq ` Ch log2p2` αqp1` α{Dq

` p1` log2p2
D
`Qqqα{D ` p1` log2Mqmaxtβ{D,α{2pD ´ 1qu

ď CLp1` log2pmaxt1` β, 2` α, 2D `Q,Muqqp1`maxtβ{D,α{2pD ´ 1quq.

Also, the number of non-zero parameters } 9Θ}0 is at most

C 1fc1MnD{p2β`Dq ` c2MJp2D `Qqp1` 2C 1ˆqn
2pD´1q{p2α`2D´2q

`MJ
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` c32Mp1` Cˆ maxtnD{p2β`Dq, np2D´2q{p2α`2D´2q
uq

ď CSMp1` Jp2
D
`QqmaxtnD{p2β`Dq, np2D´2q{p2α`2D´2q

uq, (8)

with a constant CS ą 0. Then, there exists a function by the neural network 9f :“ Gηr 9Θs
which satisfies

}f˚ ´ 9f}L2

ďMn´β{p2β`Dq ` 2JMp2D `Q´ 1{2qn´α{p2α`2D´2q
` 2M maxtn´β{p2β`Dq, n´α{pα`2D´2q

u

ď 2JMp2D `Q´ 1{2qmaxtn´β{p2β`Dq, n´α{pα`2D´2q
u. (9)

A.2. Evaluate an entropy bound of the estimators by DNNs. Here, we evaluate a

variance term of } pfL ´ f˚}n in (6) through evaluating the term
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

n

ÿ

iPrns

ξip pf
L
pXiq ´ fpXiqq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

To bound the term, we employ the technique by the empirical process technique (Koltchinskii,
2006; Giné and Nickl, 2015; Suzuki, 2018).

We consider an expectation of the term. Let us define a subset rFNN,δ Ă FNN,ηpS,B, Lq as
rFNN,δ :“ tf ´ pfL : }f ´ pfL}n ď δ, f P FNN,ηpS,B, Lqu. Here, we mention that f P rFNN,δ is
bounded by providing the following lemma.

Lemma 3. For any f P rFNN,δ with an activation function η satisfying Lipschitz continuity
with a constant 1, we obtain

}f}L8 ď Bf ,

where Bf ą 0 is a finite constant.

Proof. For each ` P rLs, consider a transformation

f`pxq :“ ηpA`x` b`q.

When }x}8 “ Bx and } vecpA`q}8, }b`}8 ď B, we obtain

}f`}L8 ď }A`x` b`}8 ď D`BxB `B.

Let D̄ :“ max`PrLsD`, when iteratively we have

}f}L8 ď
ÿ

`PrLsYt0u

ź

`1PrLszr`s

pD̄Bq`
1

ă 8,

by applying that }x}8 ď 1 for an input. �

Due to Lemma 3, with given tXiuiPrns, we can apply the chaining (Theorem 2.3.6 in Giné
and Nickl (2015)) and obtain

2Eξ

»

– sup
f 1P rFNN,δ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

ÿ

iPrns

ξif
1
pXiq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

fi

fl ď 8
?

2
σ

n1{2

ż δ{2

0

b

log 2N pε1,FNN,ηpS,B, Lq, } ¨ }nqdε
1.
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Here, to apply Theorem 2.3.6 in Giné and Nickl (2015), we set n´1{2
ř

iPrns ξifpXiq as the

stochastic process and 0 as Xpt0q in the theorem. Then, to bound the entropy term, we apply
an inequality

N pε, rFNN,δ, } ¨ }nq

ď N pε,FNN,ηpS,B, Lq, } ¨ }L8q

ď logN pε,FNN,ηpS,B, Lq, } ¨ }L8q

ď pS ` 1q log

ˆ

2pL` 1qN2

ε

˙

,

where the last inequality holds by Theorem 14.5 in Anthony and Bartlett (2009) and Lemma
8 in Schmidt-Hieber (2017). Then, we obtain

2Eξ

»

– sup
f 1P rFNN,δ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

ÿ

iPrns

ξif
1
pXiq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

fi

fl ď 4
?

2
σ
?
S ` 1δ

n1{2

ˆ

log
pL` 1qN2

δ
` 1

˙

. (10)

With the bound (10) for the expectation term, we apply the Gaussian concentration inequality
(Theorem 2.5.8 in Giné and Nickl (2015)) by setting n´1

ř

iPrns ξif
1pXiq as the stochastic

process and δ2 ě }f}2n be B2 and obtain

1´ expp´nu2
{2σ2δ2

q

ď Prξ

¨

˝4 sup
f 1P rFNN,δ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

ÿ

iPrns

ξif
1
pXiq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď 4Eξ

«

sup
f 1P rFNN,δ

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

ξif
1
pXiq

ˇ

ˇ

ˇ

ˇ

ˇ

ff

` u

˛

‚

ď Prξ

¨

˝4 sup
f 1P rFNN,δ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

ÿ

iPrns

ξif
1
pXiq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď 8
?

2
σ
?
S ` 1δ

n1{2

ˆ

log
pL` 1qN2

δ
` 1

˙

` u

˛

‚, (11)

for any u ą 0. Let us introduce the following notation as

Vn :“ 8
?

2
σ
?
S ` 1

n1{2
.

To evaluate the variance term, we reform the basic inequality (6) as

´
2

n

n
ÿ

i“1

ξip pf
L
pXiq ´ fpXiqq ` }f

˚
´ pfL}2n ď }f

˚
´ f}2n,

and apply an inequality 1
2
} pfL ´ f}2n ď }f ´ f

˚}2n ` }f
˚ ´ pfL}2n, then we have

´
2

n

n
ÿ

i“1

ξip pf
L
pXiq ´ fpXiqq `

1

2
} pfL ´ f}2n ´ }f ´ f

˚
}

2
n ď }f

˚
´ f}2n,

then we have

´
2

n

n
ÿ

i“1

ξip pf
L
pXiq ´ fpXiqq `

1

2
} pfL ´ f}2n ď 2}f˚ ´ f}2n. (12)
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Let we consider a lower bound for ´ 2
n

ř

iPrns ξip
pfLpXiq ´ fpXiqq. To make the bound (11)

be valid for all f P FNN,ηpS,B, Lq, we let δ “ maxt} pfL ´ f}n, Vnu. Then, we obtain the
bound

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

n

ÿ

iPrns

ξip pf
L
pXiq ´ fpXiqq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď maxt} pfL ´ f}n, Vnu

"

Vn

ˆ

log
pL` 1qN2

Vn
` 1

˙*

` u

ď
1

4

´

maxt} pfL ´ f}n, Vnu
¯2

` 2

"

Vn

ˆ

log
pL` 1qN2

Vn
` 1

˙*2

` u,

by using xy ď 1
4
x2 ` 2y2. Using this result to (12), we obtain

´
1

4

´

maxt} pfL ´ f}n, Vnu
¯2

´ 2

"

Vn

ˆ

log
pL` 1qN2

Vn
` 1

˙*2

´ u`
1

2
} pfL ´ f}2n ď 2}f˚ ´ f}2n.

If } pfL ´ f}n ě Vn holds, we obtain

´
1

4
} pfL ´ f}2n ´ 2

"

Vn

ˆ

log
pL` 1qN2

Vn
` 1

˙*2

´ u`
1

2
} pfL ´ f}2n ď 2}f˚ ´ f}2n.

Then, simple calculation yields

} pfL ´ f}2n ď 4

"

Vn

ˆ

log
pL` 1qN2

Vn
` 1

˙*2

` 2u` 4}f˚ ´ f}2n. (13)

If } pfL ´ f}n ď Vn, the same result holds.

We additionally apply an inequality 1
2
} pfL ´ f˚}2L2 ď }f˚ ´ f}2n ` }

pfL ´ f}2n to (13), we
obtain

} pfL ´ f˚}2n ď 10}f˚ ´ f}2n ` 8

"

Vn

ˆ

log
pL` 1qN2

Vn
` 1

˙*2

` 4u, (14)

with probability at least 1´ expp´nu2{2σ2δ2q for all u ą 0.

A.3. Combine the results. Combining the results in Section A.1 and A.2, we evaluate an

expectation of the LHS of (14), i.e. } pfL ´ f˚}L2pPXq. To this end, we substitute 9f in Section
A.1 into f in (14) and obtain

EX
”

} 9f ´ f˚}2n

ı

“

ż

r0,1sD
p 9f ´ f˚q2dPX “

ż

r0,1sD
p 9f ´ f˚q2dλ

dPX
dλ

ď } 9f ´ f˚}2L2 sup
xPr0,1sD

pXpxq,

(15)

by the Hölder’s inequality. Here, pX is a density of PX and supxPr0,1sD pXpxq ď BP is finite by
the setting.

Then, for all n P N and u ą 0, we have

} pfL ´ f˚}2L2pPXq
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ď 10BP }
9f ´ f˚}2L2 ` 8

"

Vn

ˆ

log
pL` 1qN2

Vn
` 1

˙*2

` 4u

ď 4J2M2
p2D `Q´ 1{2q2 maxtn´2β{p2β`Dq, n´α{pα`2D´2q

u

` 128
σ2pS ` 1q

n

ˆ

log
pL` 1qN2

Vn
` 1

˙2

`
4Cu
n
,

where u “ Cu{n with a constant Cu ą 0. Here, we know the number of non-zero parameters
S ď CSMp1 ` Jp2D ` Qqmaxtn´D{p2β`Dq, n´2D´2{p2α`2D´2quq. Then, we substitute it and
obtain

} pfL ´ f˚}2L2pPXq

ď

#

4J2M2
p2D `Q´ 1{2q2 ` 128σ2CSMp1` Jp2

D
`Qq

ˆ

log
pL` 1qN2

Vn
` 1

˙2
+

ˆmaxtn´2β{p2β`Dq, n´α{pα`2D´2q
u `

128σ2 ` 4Cu
n

.

�

Appendix B. Proof of Theorem 2

We follow a technique developed by van der Vaart and van Zanten (2011) and evaluate
contraction of the posterior distribution. To this end, we consider the following two steps. At
the first step, we consider a bound for the distribution with an empirical norm } ¨ }n. Secondly,
we derive a bound with an expectation with respect to the L2pPXq norm.

In this section, we reuse 9f P FNN,ηpS,B, Lq by the neural network 9Θ which is defined in

Section A.1. By employing 9f , we can use the bounds for an approximation error }f˚ ´ 9f}L2 ,

a number of layers in 9Θ, and a number of non-zero parameters } 9Θ}0.

B.1. Bound with an empirical norm. Step 1. Preparation
To evaluate the convergence, we provide some notions for preparation.
We use addition notation for the dataset Y1:n :“ pY1, ..., Ynq and X1:n :“ pX1, ..., Xnq and a

probability distribution of Y1:n given X1:n such as

Pn,f “
ź

iPrns

N pfpXiq, σ
2
q,

with some function f . Let pn,f be a density function of Pn,f .
Firstly, we provide an event which characterizes a distribution of a likelihood ratio. We

apply Lemma 14 in van der Vaart and van Zanten (2011) we obtain that

Pn,f˚

ˆ
ż

pn,f pY1:nq

pn,f˚pY1:nq
dΠf pfq ě expp´r2

qΠf pf : }f ´ f˚}n ă rq

˙

ě 1´ expp´nr2
{8q,

for any f and r ą 0. To employ the entropy bound, we will update Πf pf : }f ´ f˚}n ă rq

of this bound as Πf pf : }f ´ 9f}L8 ă rq. To this end, we apply Lemma 4 then it yields the
following bound such for }f ´ f˚}n as

1´ expp´nr2
{B2

f q ď PrX

´

}f ´ f˚}n ď }f ´ 9f}L8 `Bp}
9f ´ f˚}L2 ` r

¯

,
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for any r and a parameter Bf ą 0. Using the inequality (9) for } 9f ´ f˚}L2 , we define εn as

εn ě } 9f ´ f˚}L2 ,

and also substitute r “ Bpεn, then we have

1´ expp´nB2
pε

2
n{B

2
f q ď PrX

´

}f ´ f˚}n ď }f ´ 9f}L8 ` 2Bpεn

¯

.

Then, we consider an event Er as follows and obtain that

Pn,f˚ pErq :“ Pn,f˚

ˆ
ż

pn,f pY1:nq

pn,f˚pY1:nq
dΠf pfq ě expp´r2

qΠf pf : }f ´ 9f}L8 ă Bpεnq

˙

ě 1´ expp´n9B2
pε

2
n{8q ´ expp´nB2

pε
2
n{B

2
f q, (16)

by substituting r “ 3Bpεn.
Secondly, we provide a test function φ : Y1:n ÞÑ z P R which can identify the distribution

with f˚ asymptotically. Let En,f r¨s be an expectation with respect to Pn,f . By Lemma 13 in
van der Vaart and van Zanten (2011), there exists a test φ satisfying

En,f˚rφrs ď 9N pr{2,FNN,ηpS,B, Lq, } ¨ }nq expp´r2
{8q,

and

sup
fPFNN,ηpS,B,Lq:}f´f˚}něr

En,f r1´ φrs ď expp´r2
{8q,

for any r ą 0 and j P N. By the entropy bound for N pr,FNN,ηpS,B, Lq, }¨}nq ď N pr,FNN,ηpS,B, Lq, }¨
}L8q, we have

En,f˚rφrs ď r´118pL` 1qN2 expp´r2
{8` S ` 1q.

Step 2. Bound an error with fixed design.
To evaluate contraction of the posterior distribution, we decompose the expected posterior

distribution as

Ef˚ rΠf pf : }f ´ f˚}n ě 4εr|Dnqs

ď Ef˚ rφrs ` Ef˚ rEcr s ` Ef˚ rΠf pf : }f ´ f˚}n ą 4εr|Dnqp1´ φrq1Ers

“: An `Bn ` Cn.

Here, note that a support of Πf is included in FNN,ηpS,B, Lq due to the setting of Π.
About An, we use the bound about φr substitute

?
nεr into r, then obtain

An ď 18p
?
nεrq´1

pL` 1qN2 expp´nε2r2
{8` S ` 1q.

About Bn, by using the result of Er as (16) and substitute
?
nεr into r, then we have

Bn ď expp´n9B2
pε

2
n{8q ` expp´nB2

pε
2
n{B

2
f q.

About Cn, we decompose the term as

Cn “ EX

«

En,f˚

«
ş

FNN,ηpS,B,Lq
1t}f´f˚}ną4εrupn,f pY1:nqdΠf pfq

ş

FNN,ηpS,B,Lq
pn,f pY1:nqdΠf pfq

p1´ φrq1Er

ffff
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“ EX

»

–En,f˚

»

–

ş

F 1t}f´f˚}ną4εru
pn,f pY1:nq

pn,f˚ pY1:nq
dΠf pfq

ş

F
pn,f pY1:nq

pn,f˚ pY1:nq
dΠf pfq

p1´ φrq1Er

fi

fl

fi

fl

ď EX

«

En,f˚

«

ż

fPFNN,ηpS,B,Lq:}f´f˚}ną
?

2εr

pn,f pYa:nq

pn,f˚pY1:nq
dΠf pfq

ˆ exppnε2r2
qΠf pf : }f ´ 9f}L8 ă Bpεnq

´1
p1´ φrq1Er

ffff

“ EX

«

En,f˚

«

ż

fPFNN,ηpS,B,Lq:}f´f˚}ną
?

2εr

pn,f pYa:nq

pn,f˚pY1:nq
dΠf pfq

ˆ exppnε2r2
´ log Πf pf : }f ´ 9f}L8 ă Bpεnqqp1´ φrq1Er

ffff

by the definition of Er. Here, we evaluate ´ log Πf pf : }f ´ 9f}L8 ă Bpεnq as

´ log Πf pf : }f ´ 9f}L8 ă Bpεnq ď ´ log ΠΘpΘ : }Θ´ 9Θ}8 ă LfBpεnq ď S logppBfLfεnq
´1
q,

where 9Θ is the parameter which constitute 9f and Lf is a Lipschitz constant of Gηr¨s. Thus,
the bound for Cn is rewritten as

Cn ď EX

«

ż

fPFNN,ηpS,B,Lq:}f´f˚}ną
?

2εr

pn,f pY1:nq

pn,f˚pY1:nq
En,f rp1´ φrq1Ers dΠf pfq

ˆ exppnε2r2
` S logppBfLfεnq

´1
qq

ff

ď exp

ˆ

nε2r2
` S logppBfLfεnq

´1
q ´

r12

8

˙

,

here, we introduce r1 is a r for defining φr to identify r for Er. Here, we substitute r1 “ 4
?
nεr,

then we have

Cn ď exp
`

S logppBfLfεnq
´1
q ´ 2nε2r2

˘

Combining the results about An, Bn, Cn and Dn, we obtain

Ef˚rΠf pf : }f ´ f˚}n ě 4εr|Dnqs

ď expp´nε2r2
{8` S ` 1` log 18p

?
nεrq´1

pL` 1qN2
q

` expp´n9B2
pε

2
n{8q ` expp´nB2

pε
2
n{B

2
f q ` exp

`

S logppBfLfεnq
´1
q ´ 2nε2r2

˘

ď 2 exp
`

´maxt9B2
p{8, B

2
p{B

2
funε

2
n

˘

` 2 exp
`

2nε2r ´ 2` C2S maxtn´D{p2β`Dq, n´2D´2{p2α`2D´2q
uq log n` 1

˘

.

by substituting the order or S as (8) as S “ C 1S maxtn´D{p2β`Dq, n´2D´2{p2α`2D´2quq where
C 1S “ CSMp1` Jp2

D `Qq and C2S is a constant as C2S “ C 1S log maxt´D{p2β `Dq,´2D ´
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2{p2α ` 2D ´ 2quq{pBfLf q. By substituting r “ 1 and

ε “ εn log n “ 2JMp2D `Q´ 1{2qmaxtn´β{p2β`Dq, n´α{pα`2D´2q
u log n,

then we obtain

Ef˚
“

Πf

`

f : }f ´ f˚}n ě Cε maxtn´β{p2β`Dq, n´α{pα`2D´2q
u log n|Dn

˘‰

Ñ 0,

as nÑ 8 with a constant Cε ą 0.
�

B.2. The bound with a L2pPXq norm. We evaluate an expectation of the posterior
distribution with respect to the } ¨ }L2pPXq norm. The term is decomposed as

Ef˚
“

Πf pf : }f ´ f˚}L2pPXq ą rε|Dnq
‰

ď Ef˚
“

1Ecr
‰

` Ef˚ r1ErΠf pf : 2}f ´ f˚}n ą rε|Dnqs

` Ef˚
“

1ErΠf pf : 2}f ´ f˚}L2pPXq ą rε ą }f ´ f˚}n|Dnq
‰

“: In ` IIn ` IIIn.

for all ε ą 0 and r ą 0. Since we already bound In and IIn in step 2, we will bound IIIn.
To bound the empirical norm, we provide the following lemma.

Lemma 4. Let a finite constant Bf ą 0 satisfy Bf ě }
9f ´ f˚}L8. Then, for any r ą 0 and

f P FNN,ηpS,B, Lq, we have

1´ expp´nr2
{B2

f q ď PrX

´

}f ´ f˚}n ď }f ´ 9f}L8 `Bp}
9f ´ f˚}L2 ` r

¯

.

Proof. We note that the finite Bf exists. We know that 9f P FNN,ηpS,B, Lq is bounded by
Lemma 3. Also, f˚ P FM,J,α,β is bounded since it is a finite sum of continuous functions with
compact supports.

We evaluate }f ´ f˚}n as

}f ´ f˚}n ď }f ´ 9f}n ` } 9f ´ f˚}n ď }f ´ 9f}L8 ` } 9f ´ f˚}n.

To bound the term } 9f ´ f˚}n, we apply the Hoeffding’s inequality and obtain

1´ expp´2nr2
{2B2

f q ď PrX

´

} 9f ´ f˚}n ď } 9f ´ f˚}L2pPXq ` r
¯

.

Using the inequality (15), we have

PrX

´

} 9f ´ f˚}n ď } 9f ´ f˚}L2pPXq ` r
¯

ď PrX

´

}f ´ f˚}n ď Bp}
9f ´ f˚}L2 ` r

¯

,

then obtain the desired result.
�

By Lemma 4, we know the bound

1´ expp´2nr12{2B2
f q ď PrX

`

}f ´ f˚}n ď }f ´ f
˚
}L2pPXq ` r

1
˘

,

for all f such as }f}L8 ď B. WE set r1 “ }f ´ f˚}L2pPXq, hence

1´ exp

˜

´
n}f ´ f˚}2L2pPXq

B2
f

¸

ď PrX
`

}f ´ f˚}n ď 2}f ´ f˚}L2pPXq

˘

.
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Using this result, we obtain

IIIn ď EX

«

En,f˚

«

ż

fPFNN,ηpS,B,Lq:}f´f˚}L2pPX q
ąrεą2}f´f˚}n

pn,f pY1:nq

pn,f˚pY1:nq
dΠf pfq1Er

ffff

ˆ exp
´

nε2r22 ´ log Πf pf : }f ´ 9f}L8 ă Bpεnq
¯

ď

ż

fPFNN,ηpS,B,Lq:}f´f˚}L2pPX q
ąrε

PrX
`

}f ´ f˚}L2pPXq ą 2}f ´ f˚}n
˘

dΠf pfq

ˆ exp
`

nε2r2
` S logppBfLfεnq

´1
q
˘

ď exp

˜

nε2r22 ` S logppBfLfεnq
´1
q ´

nr2ε2

B2
f

¸

,

where r2 is a parameter for defining Er. We substitute r2 “ r{
?

2B, then we have

IIIn ď exp

˜

S logppBfLfεnq
´1
q ´

nr2ε2

2B2
f

¸

Following the same discussion in Section B.1, we combine the result and obtain

In ` IIn ` IIIn

ď 3 exp
`

´maxt9B2
p{8, B

2
p{B

2
funε

2
n

˘

` exp
`

S logppBfLfεnq
´1
q ´ nr2ε2{2B2

f

˘

` 3 exp
`

2nε2r ´ 2` C2S maxtn´D{p2β`Dq, n´2D´2{p2α`2D´2q
uq log n` 1

˘

,

and setting

ε “ εn log n “ 2JMp2D `Q´ 1{2qmaxtn´β{p2β`Dq, n´α{pα`2D´2q
u log n,

yields the same results.
�

Appendix C. Proof of Theorem 3

We discuss minimax optimality of the estimator and its convergence rate. We apply the
techniques developed by Yang and Barron (1999) and utilized by Raskutti et al. (2012).

Let rFM,J,α,βpδq Ă FM,J,α,β be a packing set of FM,J,α,β with respect to } ¨ }L2 , namely, each

pair of elements f, f 1 P rFM,J,α,β satisfies }f ´ f 1}L2 ě δ. Following the discussion by Yang and
Barron (1999), the minimax estimation error is lower bounded as

min
f̄

max
f˚PFM,J,α,β

Prf˚

ˆ

}f̄ ´ f˚}L2pPXq ě
δn
2

˙

ě min
f̄

max
f˚P rFM,J,α,βpδq

Prf˚

ˆ

}f̄ ´ f˚}L2pPXq ě
δn
2

˙

.

Let rf 1 :“ argminf 1P rFM,J,α,βpδq }
rf ´ f̄} be a projected estimator f̄ onto rFM,J,α,βpδq. Then, the

value is lower bounded as

min
f̄

max
f˚P rFM,J,α,βpδq

Prf˚

ˆ

}f̄ ´ f˚}L2pPXq ě
δn
2

˙

ě min
f̄ 1

max
fP rFM,J,α,βpδq

Prf pf ‰ f̄ 1q
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ě min
f̄ 1

Pr
qf„Upf̄

1
‰ qfq,

where qf is uniformly generated from rFM,J,α,βpδq and PrU denotes a probability with respect
to the uniform distribution.

We apply the Fano’s inequality (summarized as Theorem 2.10.1 in Cover and Thomas
(2012)), we obtain

Pr
qf„Upf̄

1
‰ qfq ě 1´

IpFU ;Dnq ` log 2

log | rFM,J,α,βpδq|
,

where IpFU ;Y1:nq is a mutual information between a uniform random variable FU on rFM,J,α,βpδq
and Y1:n. The mutual information is evaluated as

IpFU ;Y1:nq

“
1

| rFM,J,α,βpδq|

ÿ

fP rFM,J,α,βpδq

ż

log

ˆ

pn,f pY1:nq

EFU rpn,FU pY1:nqs

˙

dPn,f pY1:nq

ď max
fP rFM,J,α,βpδq

ż

log

ˆ

pn,f pY1:nq

EFU rpn,FU pY1:nqs

˙

dPn,f pY1:nq

ď max
fP rFM,J,α,βpδq

max
f 1P rFM,J,α,βpδq

ż

log

˜

pn,f pY1:nq

| rFM,J,α,βpδq|´1pn,f 1pY1:nq

¸

dPn,f pY1:nq

“ max
f,f 1P rFM,J,α,βpδq

log | rFM,J,α,βpδq| `

ż

log

ˆ

pn,f pY1:nq

pn,f 1pY1:nq

˙

dPn,f pY1:nq.

Here, we know that

log | rFM,J,α,βpδq| ď logN pδ,FM,J,α,β, } ¨ }L2q,

and
ż

log

ˆ

pn,f pY1:nq

pn,f 1pY1:nq

˙

dPn,f pY1:nq ď
n

2
EX

“

}f ´ f 1}2n
‰

ď
n

2
δ2,

since f, f 1 P rFM,J,α,βpδq.
We will provide a bound for logN pδ,FM,J,α,β, } ¨}L2q. Since FM,J,α,β is a sum of M functions

in F1,J,α,β, we have

logN pδ,FM,J,α,β, } ¨ }L2q ďM logN pδ,F1,J,α,β, } ¨ }L2q.

To bound logN pδ,F1,J,α,β, } ¨ }L2q, we define Iα,J :“ t1R : ID Ñ t0, 1u|R P Rα,Ju. We know
that F1,J,α,β “ HβpIDq b Iα,J , hence we obtain

logN pδ,F1,J,α,β, } ¨ }L2q ď logN pδ,Hβ
pIDq, } ¨ }L2q ` logN pδ, Iα,J , } ¨ }L2q.

By the entropy bound for smooth functions (e.g. Theorem 2.7.1 in van der Vaart and Wellner
(1996)), we use the bound

logN pδ,Hβ
pIDq, } ¨ }L2q ď CHδ

´D{β,
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with a constant CH ą 0. Furthermore, about the covering number of Iα,J , we use the relation

}1R ´ 1R1}
2
L2 “

ż

p1Rpxq ´ 1R1pxqq
2dx “

ż

p1Rpxq ´ 1R1pxqqdx

“

ż

xPID
1Rpxqp1´ 1R1pxqqdx “: d1pR,R

1
q,

where R,R1 P Rα,J and d1 is a difference distance with a Lebesgue measure for sets by Dudley
(1974). By Theorem 3.1 in Dudley (1974), we have

logN pδ,Rα,J , d1q “ď Cλδ
´pD´1q{α,

with a constant Cλ ą 0. Then, we bound the entropy of Iα,J as

logN pδ, Iα,J , } ¨ }L2q ď logN pδ2,Rα,J , d1q ď Cλδ
´2pD´1q{α.

Substituting the results yields

logN pδ,FM,J,α,β, } ¨ }L2q ďMCHδ
´D{β

`MCλδ
´2pD´1q{α.

Then, we provide a lower bound of Pr
qf„Upf̄

1 ‰ qfq as

Pr
qf„Upf̄

1
‰ qfq ě

n
2
δ ` log 2

M maxtCHδ´D{β, Cλδ´2pD´1q{αu
.

By substituting δn “ maxtn´2β{p2β`Dq, n´α{pα`2D´2qu, we finally obtain the statement of
Theorem 3.

Appendix D. Proof of Propositions

D.1. Proof of Proposition 1. About the polynomial kernel, since the RKHS of the kernel is
the Sobolev space, we can find f˚ P FM,J,α,β which is not differentiable. To see the properties
of the RKHS, see Berlinet and Thomas-Agnan (2011). About the Gaussian kernel, we consider
f˚ “ 1R P FM,J,α,β, where R Ă ID is some open set. By Corollary 4.44 in Steinwart and
Christmann (2008), f˚ is not contained in the RKHS by the Gaussian kernel. Hence, we
obtain the results.

�

D.2. Proof of Proposition 2. We will specify f˚ P FM,J,α,β and distribution of X, and
derive a convergence rate of the estimator by the Fourier method.

For preparation, we consider D “ 1 case. Let X be generated by a distribution which
realize a specific case Xi “ i{n. Also, we specify f˚ P FM,J,α,β as

f˚pxq “ 1tx1ě0.5u,

with x “ px1, x2q P I
2. We consider a decomposition of f˚ by the trigonometric basis such as

φjpxq “

$

’

&

’

%

1 if j “ 0,
?

2 cosp2πkxq if j “ 2k,
?

2 sinp2πkxq if j “ 2k ` 1,
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for k P N. Then, we obtain

f˚ “
ÿ

jPNYt0u

θ˚j φj.

Here, θ˚j is a true coefficient.
For the estimator, we review its definition as follows. The estimator is written as

pfF “
ÿ

jPrJsYt0u

pθjφj,

where pθj1,j2 is a coefficient which is defined as

pθj “
1

n

ÿ

iPrns

YiφjpXiq.

Also, J P N are hyper-parameters. Since φj is an orthogonal basis in L2 and the Parseval’s
identity, an expected loss by the estimator is decomposed as

Ef˚
”

} pfF ´ f˚}2L2pPXq

ı

“ Ef˚

»

–

ÿ

jPNYt0u

ppθj ´ θ
˚
j q

2

fi

fl

“ Ef˚

»

–

ÿ

jPrJsYt0u

ppθj ´ θ
˚
j q

2
`

ÿ

jąJ

pθ˚j q
2

fi

fl

“
ÿ

jPrJsYt0u

Ef˚
”

ppθj ´ θ
˚
j q

2
ı

`
ÿ

jąJ

pθ˚j q
2.

Here, we apply Proposition 1.16 in Tsybakov (2009) and obtain

Ef˚
”

} pfF ´ f˚}2L2pPXq

ı

“
ÿ

jPrJsYt0u

ˆ

σ2

n
` ρ2

j

˙

`
ÿ

jąJ

pθ˚j q
2

ě
ÿ

jPrJsYt0u

σ2

n
`

ÿ

jąJ

pθ˚j q
2

“
σ2pJ ` 1q

n
`

ÿ

jąJ

pθ˚j q
2,

where ρj :“ n´1
ř

iPrns fpXiqφjpXiq ´ xf, φjy is a residual.

Considering the Fourier transform of step functions, we obtain θ˚j “
1´p´1qj

2πj
, hence

ÿ

jąJ

pθ˚j q
2
“

1

4π2
ΨpJ ` 1q “

1

4π2

ÿ

kPNYt0u

1

pJ ` 1` kq2
ě

1

4π2pJ ` 1q2
,

where Ψ is the digamma function.
Combining the results, we obtain

Ef˚
”

} pfF ´ f˚}2L2pPXq

ı

ě
σ2J ` 1

n
`

1

4π2pJ ` 1q2
.
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We set J “ tcJn
1{3 ´ 1u with a constant cJ ą 0, then we finally obtain

Ef˚
”

} pfF ´ f˚}2L2pPXq

ı

ě n´2{3

ˆ

σ2
`

1

4π2

˙

.

Then, we obtain the lower bound for the D “ 1 case.
For general D P N, we set a true function as

f˚ “
â

dPrDs

1t¨ě0.5u.

Due to the tensor structure, we obtain the decomposed form

f˚ “
ÿ

j1PNYt0u

¨ ¨ ¨
ÿ

jDPNYt0u

γj1,...,jD
â

dPrDs

φjd ,

where γj1,...,jD is a coefficient such as

γj1,...,jD “
ź

dPrDs

θjd ,

using θjd in the preceding part. Following the same discussion, we obtain the following lower
bound as

Ef˚
”

} pfF ´ f˚}2L2pPXq

ı

ě
σ2pJ ` 1qD

n
`D

ÿ

jąJ

pθ˚j q
2.

Then, we set J ´ 1 “ tn1{p2`Dqu, we obtain that the bound is written as

Ef˚
”

} pfF ´ f˚}2L2pPXq

ı

ě n´2{p2`Dq

ˆ

σ2
`

D

2π2

˙

.

Then, we obtain the claim of the proposition for any D P N .
�
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