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ABSTRACT. We theoretically discuss why deep neural networks (DNNs) performs better than
other models in some cases by investigating statistical properties of DNNs for non-smooth
functions. While DNNs have empirically shown higher performance than other standard
methods, understanding its mechanism is still a challenging problem. From an aspect of the
statistical theory, it is known many standard methods attain optimal convergence rates, and
thus it has been difficult to find theoretical advantages of DNNs. This paper fills this gap by
considering learning of a certain class of non-smooth functions, which was not covered by the
previous theory. We derive convergence rates of estimators by DNNs with a ReLLU activation,
and show that the estimators by DNNs are almost optimal to estimate the non-smooth
functions, while some of the popular models do not attain the optimal rate. In addition, our
theoretical result provides guidelines for selecting an appropriate number of layers and edges
of DNNs. We provide numerical experiments to support the theoretical results.

1. INTRODUCTION

Deep neural networks (DNNs) have shown outstanding performance on various tasks of
data analysis (Schmidhuber, |2015; LeCun et all 2015). Enjoying their flexible modeling by a
multi-layer structure and many elaborate computational and optimization techniques, DNNs
empirically achieve higher accuracy than many other machine learning methods such as kernel
methods (Hinton et al, 2006} [Le et al) [2011; Kingma and Ba, 2014). Hence, DNNs are
employed in many successful applications, such as image analysis (He et al., 2016), medical
data analysis (Fakoor et al., [2013)), natural language processing (Collobert and Weston, |2008)),
and others.

Despite such outstanding performance of DNNs, little is yet known why DNNs outperform
the other methods. Without sufficient understanding, practical use of DNNs could be
inefficient or unreliable. To reveal the mechanism, numerous studies have investigated
theoretical properties of neural networks from various aspects. with approximation theory, the
expressive power of neural networks have been analyzed(Cybenko, 1989; Barron, [1993; Bengio
and Delalleau), 2011} Montufar et all [2014} [Yarotsky], [2017}; |Petersen and Voigtlaender| 2017),
statistics and learning theories have elucidated generalization errors (Barron, |1994; Neyshabur|
et al. 2015; |Schmidt-Hieber| 2017; |Zhang et all [2017; |Suzuki, 2018), and optimization theory
has discussed the landscape of the objective function and dynamics of learning(Baldi and
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Hornik|, [1989; Fukumizu and Amari, [2000; Dauphin et al., 2014; |[Kawaguchi, 2016; [Soudry
and Carmon, 2016).

One limitation in the existing statistical analysis of DNNs is a smoothness assumption for
data generating processes. It makes one of the reasons for difficulties, when we try to reveal
the advantage of DNNs. In the statistical theory, it is assumed that data are generated from
smooth (i.e. differentiable) functions, namely, data {(Y;, X;)} are given

Y = f(Xi) + &, & ~N(0,0%),

where f is a [-times differentiable function with D-dimensional input. With this setting,
however, not only DNNs but also other popular methods (kernel methods, Gaussian processes,
series methods, and so on) achieve generalization errors bounded as

O (n~28/@5+D)y

which is known to be optimal in the minimax sense (Stone|, [1982; Tsybakov, |2009; Giné and
Nickl, 2015). Hence, as long as we employ the smoothness assumption, it is not possible to
show a theoretical evidence for the empirical advantage of DNNs.

This paper considers learning of non-smooth functions for the data generating processes
to break the difficulty. We prove that DNNs certainly have a theoretical advantage under
the non-smooth setting. Specifically, we discuss a nonparametric regression problem with a
class of piecewise smooth functions which are non-smooth on boundaries of pieces in their
domains. Then, we derive convergence rates of least square and Bayes estimators by DNNs
with a ReLLU activation as

O (max {n—QB/(2B+D)’ n—a/(a+D—1)}) 7

up to log factors (Theorems [1} 2] and Corollary [I)). Here, o and 3 denote a degree of
smoothness of piecewise smooth functions, and D is the dimensionality of inputs. We prove
also that the convergence rate by DNNs is optimal in the minimax sense (Theorem . In
addition, we show that some of other popular methods, such as kernel methods and orthogonal
series methods with some specified bases, cannot estimate the piecewise smooth functions
with the optimal convergence rate (Proposition [l and . Notably, in contrast to these models,
our result shows that DNNs with a ReL U achieve the optimal rate in estimating non-smooth
functions, although the DNN realizes smooth functions. We provide some numerical results
supporting our results.
Contributions of this paper are as follows:

e We derive the convergence rates of the estimators by DNNs for the class of piecewise
smooth functions. Our convergence results are more general than existing studies,
since the class is regarded as a generalization of smooth functions.

e We prove that DNNs theoretically outperform other standard methods for data from
non-smooth generating processes, as a consequence the proved convergence rates.

e We provide a practical guideline on the structure of DNNs; namely, we show a necessary
number of layers and parameters of DNNs to achieve the optimal convergence rate. It
is shown in Table

All of the proofs are deferred to the supplementary material.
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ELEMENT NUMBER

# OF LAYERS < ¢(1 + max{8/D,a/2(D — 1)})
4 OF PARAMETERS ¢/nmax{D/(26+D),(2D~2)/(2a+2D~2)}

TABLE 1. Architecture for DNNs which are necessary to achieve the optimal
convergence rate. ¢, > 0 are some constants.

1.1. Notation. We use notations / := [0, 1] and N for natural numbers. The j-th element
of vector b is denoted by b;, and || - [, 1= (¥; b1)Y? is the g-norm (g € [0,%0]). vec(:) is
a vectorization operator for matrices. For z € N, [z] := {1,2,...,z} is the set of positive
integers no more than z. For a measure P on I and a function f : I — R, |f|z2p) :=
(§; 1/ (x)[PdP(x))"/* denotes the L*(P) norm. ® denotes a tensor product, and &), 2 :=
T1® - @y for a sequence {x;} jers-

2. REGRESSION WITH NON-SMOOTH FUNCTIONS

We formulate a regression problem when a function for generating data is non-smooth.
Firstly, we summarize a brief outline of the regression problem, and secondly, we introduce a
class of non-smooth functions.

2.1. Regression Problem. In this paper, we use the D-dimensional cube I? (D > 2) for
the domain of data. Suppose we have a set of observations (X;,Y;) € I” x R for ¢ € [n] which
is independently and identically distributed with the data generating process

Y = f5(Xi) + &, (1)

where f*: I” — R is an unknown true function and &; is Gaussian noise with mean 0 and
variance 0% > 0 for i € [n]. We assume that the marginal distribution of X on I” has a
positive and bounded density function Px(z).

The goal of the regression problem is to estimate f* from the set of observations D,, :=
{(Xi,Y:) }biepn). With an estimator f, its performance is measured by the L?(Px) norm:

IF = £ ey = Bx [(F) = £7()?]

There are various methods to estimate f* and their statistical properties are extensively
investigated (For summary, see Wasserman| (2006)) and [T'sybakov| (2009)).

A classification problem can be also analyzed through the regression framework. For
instance, consider a (-classes classification problem with covariates X; and labels Z; € [Q]
for i € [n]. To describe the classification problem, we consider a Q-dimensional vector-valued
function f*(x) = (f{(x), ..., f5(r)) and a generative model for Z; as

Z; = argmax f; (X;).
€[Q]

Here, estimating f* can solve the classification problem. (For summary, see |Steinwart and
Christmann, (2008))).
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2.2. Piecewise Smooth Functions. To describe non-smoothness of functions, we introduce
a notion of piecewise smooth functions which have a support divided into several pieces
and smooth only within each of the pieces. On boundaries of the pieces, piecewise smooth
functions are non-smooth, i.e. non-differentiable and even discontinuous. Figure 1| shows an
example of piecewise smooth functions.

f(Xlr XZ)

+
X7 =%

FIGURE 1. An example of piecewise smooth functions with a 2-dimensional
input. The support [0, 1]? is divided into three pieces and the function f (1, z5)
is non-smooth (also discontinuous) on boundaries of the pieces.

As preparation, we introduce notions of (i) smooth functions and (ii) pieces in supports.
Afterwards, we combine them and provide the notion of (iii) piecewise smooth functions.

(i). Smooth Functions

We introduce the Holder space to describe smooth functions. With a parameter g > 0, the
Hoélder norm for f: I” — R is defined as

a 0°f(x) — 0" f(a')|
s 1= max sup |0°f(z)| + max  sup ,
£l la|<|B] zerD [ f (@) |a|=18] 3 27D zrz |z — a/|F- 18]

where a denotes a multi-index of differentiation and 0* denotes a partial derivative. Then,
the Holder space H? on I is defined as

H = {f:1” > R | | flus < 0}.

Intuitively, H” contains functions such that they are |3|-times differentiable and the |3|-th
derivatives are § — | 8|-Hélder continuous.

The Holder space is popularly used for representing smooth functions, and many statistical
methods can effectively estimate functions in the Holder space. (For summary, see

Nick] 2015).

(ii). Pieces in Supports
To describe pieces in supports, we introduce an extended notion of a boundary fragment

class which is developed by (1974) and Mammen et al. (1999).

Preliminarily, we consider a sphere S?~! := {z € R : |z, = 1} in R? and its center
is the origin. With J € N, let {V]}j:1 be sets in SP~! such as Uje[]] c(V;) = SP~1 and
VinVi=@.Nj #7555 €[J].
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We provide a notion of boundaries of a piece in R” using {V;}e(s;. Let SP7! = {z €
[—1,1]7 : |x]2 < 1} be an open ball in R, and Fj : SP~1 — V; be a C* surjective function
for j € [J]. With a parameter o > 1, let G, ; be the set of boundaries, defined by

ga,J ::{(917 "‘7gD) | injective,gd : SD_l - I)gd o -F} € H&<3D—1)’j € [‘]]Jd € [‘D]7 })

where H%(SP~1) denotes the Holder space of smooth functions on SP~1. Intuitively, bound-
aries g = (g1, ...,gp) is ||-times differentiable expect at frontier points of V;.
Given g € G, ; as the boundary of a piece, we define Int(g) as the interior of g € G, s

(detailed definition is provided by (1974)). At last, we define R, s as a set of pieces
in 1P such as

Ra,y = {Int(g) : g€ Ga.s}.
Figure [2 shows a brief example.

{g()lt € S}

Int{g) S RD.J

FIGURE 2. An example of pieces with D = 2 and J = 3. The top figure is a
circle, and the middle figure is a boundary is obtained by reshaping the circle
and it is smooth except the frontier points of V; (the red dots). The bottom
figure is the piece as Int(g). The interior is shown as the blue area.

We mention that R, ; can describe a wide range of pieces (Dudley, 1974): R, ; with oo = 2
is dense in a set of all convex sets in I7.

(iii). Piecewise Smooth Functions
Using H? and R, ;, we define piecewise smooth functions. Let M € N be a number of
pieces of the support I”. With a piece R = IP, let 15 : I” — {0, 1} be the indicator function
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such that

15(2) , ifreR,
x:
R 0, ifzé¢R

We define a set of piecewise smooth functions as

M

-/—-M,J,oz,ﬁ = { Z fm®1Rm : fm € HﬁyRm € Ra,J} .
m=1

Since f,(x) realizes only when z € R,,, the notion of Fj/ j. 3 can express a combination of

smooth functions on each piece R,,. Hence, functions in Fjs ;. s are non-smooth (and even

discontinuous) on boundaries of R,,. Obviously, H® < Fy jap with M = 1 and R, = I”,

hence the notion of piecewise smooth functions can describe a wider class of functions.

3. ANALYSIS FOR ESTIMATION BY DNNS

In this section, we provide estimators for the regression problem by DNNs and derive
their theoretical properties. Firstly, we define a statistical model by DNNs. Afterwards, we
investigate two estimators by DNNs; a least square estimator and a Bayes-estimator.

3.1. Models by Deep Neural Networks. Let L € N be the number of layers in DNNs.
For ¢ € [L + 1], let D, € N be the dimensionality of variables in the ¢-th layer. For brevity,
we set Dr.q = 1, i.e., the output is one-dimensional. We define 4, € RP¢+1*P¢ and b, € RP*

be matrix and vector parameters to give the transform of /-th layer. The architecture © of
DNN is a set of L pairs of (A, by):

@ = ((Ab bl), ceny (AL, bL))

We define |©] := L be a number of layers in ©, Ollo := 3,1 | vec(Ar)[lo + [bello as a number
of non-zero elements in O, and O], := max{max(r) | vec(Ar)||w, maxeer] [bell} be the
largest absolute value of the parameters in ©.

For an activation function 7 : R?”" — R for each D’ € N, this paper considers the ReLU
activation n(x) = (max{xq, 0})4erp-

The model of neural networks with architecture © and activation 7 is the function G, [©] :
RP1 — R, which is defined inductively as

G[](x) = s,
with

2 = (A + by), for £ e [L],
where L = |O| is the number of layers. The set of model functions by DNNs is thus given by
Frna(S, B, 1) = {Gy[0] : I = R | |©]o < 5,|6]. < B,J6] < '},

with S e N, B> 0, and L' € N. Here, S bounds the number of non-zero parameters of DNNs
by ©, namely, the number of edges of an architecture in the networks. This also describes
sparseness of DNNs. B is a bound for scales of parameters.
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3.2. Least Square Estimator. Using the model of DNNs, we define a least square estimator
by empirical risk minimization. Using the observations D,,, we consider the minimization
problem with respect to parameters of DNNs as

A~

Fre agmin — (V- f(X))2 2)

feFnN,(S,B,L) T ien]

and use f¥ for an estimator of f*.

Note that the problem has at least one minimizer since the parameter set © is compact
and 7 is continuous. If necessary, we can add a regularization term for the problem , because
it is not difficult to extend our results to an estimator with regularization. Furthermore, we
can apply the early stopping techniques, since they play a role as the regularization (LeCun
et all [2015)). However, for simplicity, we confine our arguments of this paper in the least
square. R

We investigate theoretical aspects of convergence properties of f with a ReLU activation.

Theorem 1. Suppose f* € Furjap. Then, there exist constants ci,c;,Cr > 0,s € N\{1},
and (S, B, L) satisfying

(i) S = Cll maX{nD/(25+D),n(QD_Q)/(%H'QD_Q)},
(i) B = ¢n®,
(i) L < c;(1 + max{3/D,a/2(D — 1)}),

such that fF e Fnnn(S, B, L) provides

|5 = [ 2a(py) < Crmax{n™27/GF0) gmelletb=Dhlogp, (3)

with probability at least 1 — c;n™2.

Proof of Theorem [1]is a combination of a set estimation (Dudley, 1974; Mammen and Tsy+
bakov,, [1995)), an approximation theory of DNNs (Yarotsky|, 2017; Petersen and Voigtlaender,
2017), and an applications of the empirical process techniques (Koltchinskii, 2006; |Giné and
Nickl, 2015; Suzuki, 2018).

The convergence rate in Theorem [1] is simply interpreted as follows. The first term
n~28/(26+D) describes an effect of estimating f,, € H? for m e [M]. The rate corresponds
to the minimax optimal rate for estimating smooth functions in H? (For a summary, see
Tsybakov! (2009)). The second term n~®/(+P=1 reveals an effect from estimation of 15,
for m € [M] through estimating the boundaries of R,, € R, ;. The same convergence rate
appears in a problem for estimating sets with smooth boundaries (Mammen and Tsybakov,
1995).

We remark that a larger number of layers decreases B. Considering the result by |[Bartlett
(1998), which shows that large values of parameters make the performance of DNNs worse,
the above theoretical result suggests that a deep structure can avoid the performance loss
caused by large parameters.

We also mention that our theoretical result is independent of the non-convex optimization
problem. vSuppose an optimization method fails to obtain the minimizer, ie. we obtain a
solution f € Fyy,(S, B, L) such that A = n=' 3 (¥; — f(X;))? = (V; — f(X;))? with an
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error A > (0. Then, an error of f is evaluated as
E [Hf— f*HQLQ(PX)] < Cpmax{n *Y/G0HP) e/t DU jogp + A,

since we can evaluate the estimation error and the optimization error independently. Here,
Ef«[-] denotes an expectation with respect to the true distribution of (X,Y"). Thus, combining
the results on the magnitude of A (e.g. [Kawaguchi| (2016))), we can evaluate the error in the
cases of non-convex optimization.

3.3. Bayes Estimator. We define a Bayes estimator for DNNs which can avoid the non-
convexity problem in optimization. Fix architecture © and Fnn,, (S, B, L) with given S, B
and L. Then, a prior distribution for Fyn,(S, B, L) is defined through providing distributions

for the parameters contained in ©. Let HéA) and Hﬁb) be distributions of A, and b, as
Ap~ 1Y by ~ 1

for ¢ € [L]. We set HEA) and Héb) such that each of the S parameters of © is uniformly
distributed on [—B, B], and the other parameters degenerate at 0. Using these distributions,
we define a prior distribution Ilg on © by

e := QMM @11".
Le[L]
Then, a prior distribution for f € Fyn,(S, B, L) is defined by
s (f) == He(© : Gy[O] = f).

We consider the posterior distribution for f. Since the noise &; in is Gaussian with its
variance o2, the posterior distribution is given by

exp(— N (Vi — (X)) /o))

Sexp(= Dy (Vi — f1(X3))?/0?)dT; (')

Note that we do not discuss computational issues of the Bayesian approach since the main
focus is a theoretical aspect. To solve the computational problems, see Hernandez-Lobato
and Adams (2015)) and others.

We provide theoretical analysis on the rate of contraction for the posterior distribution.
Same as the least square estimator cases, we consider a ReLLU activation function.

dI;(f|Dn)

Theorem 2. Suppose f* € Furjap. Then, there exist constants co,ch, Cp > 0,5 € N\{1},
architecture © : |Oy < S, (|8l < B, |O| < L satisfying following conditions:
(i) S = ¢ max{nP/@6+D) p(2D=2)/(2a+2D-2)}
(ii) B = con®,
(i) L < co(1 + max{8/D,a/2(D —1)}),
and a prior distribution 11y, such that the posterior distribution I1¢(-|D,,) provides

E f+ [Hf (f = T pgy = 7CB % max{n’%/(w“)),n’a/(o‘JrD’l)}logn\Dn)]
, (4)

2 D/(26+D) n(D—l)/(a+D—1)})

< exp (—r’c; max{n

for all r > 0.
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To provide proof of Theorem [2], we additionally apply studies for statistical analysis for
Bayesian nonparametrics (van der Vaart and van Zanten|, 2008} 2011)).
Based on the result, we define a Bayes estimator as

- j FdILy(f[D,),

by the Bochner integral in L*®(I”). Then, we obtain the convergence rate of J?B by the
following corollary.

Corollary 1. With the same setting in Theorem@ consider fB. Then, we have
Efs [||fB - f*HiQ(PX)] < Cpmax{n~28/28+D) p-a/(@D=DY o0y

This result states that the Bayes estimator can achieve the same convergence rate as
the least square estimator shown in Theorem Since the Bayes estimator does not use
optimization, we can avoid the non-convex optimization problem, while the computation of
the posterior and mean are not straightforward.

4. DiscussioN: WHY DNNS WORK BETTER?

We discuss why DNNs work better than some other popular methods. Firstly, we show
that the convergence rates by DNNs in Theorem (1| and [2| are optimal for estimating a function
in the piecewise smooth function class. Secondly, we provide additional shreds of evidence
that other methods are not suitable for the piecewise smooth functions. At last, we add some
discussions.

4.1. Optimality of the DNN Estimators. We will show optimality of the convergence
rates by the DNN estimators in Theorem [I] and Corollary [} To this end, we employ a theory
of minimax optimal rate which is known in the field of mathematical statistics (Giné and Nickl,
2015). The theory derives a lower bound of a convergence rate with arbitrary estimators, thus
we can obtain a theoretical limitation of convergence rates.

The result of the minimax optimal rate for the class of piecewise smooth functions Fas a3
is shown in the following theorem.

Theorem 3. Consider f is an arbitrary estimator for f* € Farjaps. Then, there exists a
constant Cy,ym > 0 such that

inf sup  Eps [HJF— f*H%Z(pX)] > Cly max {n~2H/EFHD) iy me/lot D=1
I f*eFu ga.8

Proof of Theorem 3| employs techniques in the minimax theory developed by Yang and
Barron| (1999) and Raskutti et al.| (2012)).

We show that the convergence rates by the estimators with DNNs are optimal in the
minimax sense, since the rates in Theorems [l| and [2| correspond to the lower bound of Theorem
up to a log factor. In other words, for estimating f* € Fys a5, no other methods could
achieve a better convergence rate than the estimators by DNNs.
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4.2. Inefficiency of Other Methods. We consider kernel methods and orthogonal series
methods as representatives of other standard methods, then show that these methods are not
optimal for estimating piecewise smooth functions.

Kernel methods are popular to estimate functions in the field of machine learning (Rasmussen
and Williams, 2006; Steinwart and Christmann, [2008]). Also, it is well known that theoretical
aspects of kernel methods are equivalent to that of the Gaussian process regression (van der
Vaart and van Zanten, 2008). An estimator by the kernel method is defined as

A~

F¥(x) = argmin LS fC)E + ul F By
€K ie[n]

where K : IP? x IP — R is a kernel function, H is a reproducing kernel Hilbert space given by
K with its norm | - ||, and p > 0 is a regularization coefficient as a hyper-parameter. Here,
we consider two standard kernel functions such as the Gaussian kernel and the polynomial
kernel. In the Gaussian kernel case, it is known that f&(z) are optimal when f* € H”
(Steinwart and Christmann, 2008)). We provide a theoretical result about 7K (x) for estimating
non-smooth functions.

Proposition 1. Fiz D e N\{1}, M, J e Nya > 0 and > 0 arbitrary. Let fK(x) be the kernel
estimator with the Gaussian kernel or the polynomial kernel. Then, there exists f* € Fur ja,p
and a constant Cx > 0 such that

g [HfK - f*H%Q(PX)] — Ck,
as n — 0.

Since the kernel functions are not appropriate to express smooth structure of f* a set of
functions by the kernel functions do not contain some f* € Fj/ jo 5. Although the Gaussian
kernel is universal kernel, i.e. the RKHS by the Gaussian kernel is dense in a class of continuous
functions, some f* € Fa ja,p has a discontinuous structure, hence kernel methods with the
kernel functions cannot estimate f* € Fas jqo,p consistently. Similar properties hold for other
smooth kernel functions.

Orthogonal series methods, which is known as Fourier methods, estimate functions using an
orthonormal basis. It is one of the most fundamental methods for nonparametric regression
(For an introduction, see Section 1.7 in Tsybakov| (2009)). Let ¢;(x) for j € N be an
orthonormal basis function in L?(Py). An estimator for f* by the orthogonal series method
is defined as

Fo@) = ), A05(),
JjelJ]
where J € N is a hyper-parameter and 7; is a coefficient calculated as 7; := %Zie[n] Yip;(X;).

When the true function is smooth, i.e. f*e HP, fs is known to be optimal in the minimax
sense (T'sybakovi, 2009). About estimation for f* € Fu 543, we can obtain the following
proposition.

Proposition 2. Fizx D e N\{1}, M, J e N o > 2 and § > 1 arbitrary. Let J?S be the estimator
by the orthogonal series method. Suppose ¢;,7 € N are the trigonometric basis or the Fourier



DNNS FOR NON-SMOOTH FUNCTIONS 11

basis. Then, with sufficient large n, there exist f* € Far ja, Px, a constant Cp > 0, and a
parameter

—k > max{—23/(268 + D),—a/(a + D — 1)},
such that
Ef* [HfF _ f*H%Q(PX):l > CFTL_H.

Proposition |2 shows that ]?S can estimate f* € Fi s p consistently since the orthogonal
basis in L?(Pyx) can reveal all square integrable functions. Its convergence rate is, however,
strictly worse than the optimal rate. Intuitively, the method requires many basis functions
to express the non-smooth structure of f* € Fys j45, and a large number of bases increases
variance of the estimator, hence they lose efficiency.

4.3. Interpretation on Our Result. According to the results, we can see that the estimators
by DNNs have the theoretical advantage than the others for estimating f* € Fas 4.3, since
the estimators by DNNs achieve the optimal convergence rate and the others do not.

We provide an intuition on why DNNs are optimal and the others are not. The most notable
fact is that DNNs can realize non-smooth functions with a small number of parameters, due
to activation functions and multi-layer structures. A combination of two ReLLU functions can
approximate step functions, and a composition of the step functions in a combination of other
parts of the network can easily express smooth functions restricted to pieces. In contrast,
even though the other methods have the universal approximation property, they require a
larger number of parameters to represent non-smooth structures. By the statistical theory, a
larger number of parameters increases variance of estimators and worsens the performance,
hence the other methods lose the optimality.

About the inefficiency of the other methods, we do not claim that every statistical method
except DNNs misses the optimality for estimating piecewise smooth functions. Our argument
is the advantage of DNNs against the commonly used methods, such as the orthogonal series
methods and the kernel methods. There may exist some other models which can achieve the
optimality as DNNs, and this is an interesting future work.

An estimation using non-smooth kernels or basis functions is also an interesting direction.
While some studies have investigated properties in such situations(van Eeden, [1985; Wu and
Chu, 1993alb; Wolpert et al., 2011; Imaizumi et al., 2018]), these works focus on different
settings such as density estimation or univariate data analysis, hence their setting does not fit
problems discussed here.

5. EXPERIMENTS

We carry out simple experiments to support our theoretical results.

5.1. Non-smooth Realization by DNNs. We show how the estimators by DNNs can
estimate non-smooth functions. To this end, we consider the following data generating process
with a piecewise linear function. Let D = 2, £ be an independent Gaussian variable with
a scale o = 0.5, and X be a uniform random variable on I?. Then, we generate n pairs of
(X,Y) from with a true function f* as piecewise smooth function such that

F*(x) = 15, (2)(0.2 + 22 + 0.122) + 1g, (2)(0.7 + 0.01|4z; + 1025 — 9|9, (5)
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with a set Ry = {(z1,22) € [ : 29 > —0.621 + 0.75} and R, = I*\R;. A plot of f in figure [3]
shows its non-smooth structure.

About the estimation by DNNs, we employ the least square estimator . For the
architecture © of DNNs, we set |©| = 4 and dimensionality of each of the layers as D; =
2, Dy =3 for { € {2,3,4}, and D5 = 1. We use a ReLLU activation. To mitigate an effect of
the non-convex optimization problem, we employ 100 initial points which are generated from
the Gaussian distribution with an adjusted mean. We employ Adam (Kingma and Ba, 2014)
for optimization. R

We generate data with a sample size n = 100 f and obtain the least square estimator f L for
f*. Then, we plot f¥ in Figure EI which minimize an error from the 100 trials with different
initial points. We can observe that f% succeeds in approximating the non-smooth structure

of f*.

A 1 0 A 1 0

FIGURE 3. A plot for f*. FIGURE 4. A plot for fL.

5.2. Comparison with the Other Methods. We compare performances of the estimator
by DNNs, the orthogonal series method, and the kernel methods. About the estimator by
DNNs, we inherit the setting in Section 5.1} About the kernel methods, we employ estimators
by the Gaussian kernel and the polynomial kernel. A bandwidth of the Gaussian kernel is
selected from {0.01,0.1,0.2,...,2.0} and a degree of the polynomial kernel is selected from [5].
Regularization coefficients of the estimators are selected from {0.01,0.4,0.8,...,2.0}. About
the orthogonal series method, we employ the trigonometric basis which is a variation of the
Fourier basis. All of the parameters are selected by a cross-validation.

We generate data from the process with with a sample size n € {100, 200, ..., 1500}
and measure the expected loss of the methods. In figure [5, we report a mean and standard
deviation of a logarithm of the loss by 100 replications. By the result, the estimator by
DNNs always outperforms the other estimators. The other methods cannot estimate the non-
smooth structure of f*, although some of the other methods have the universal approximation

property.
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--§- DNN ¥ Kernel{poly)
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g 3.0 .
d_ *::t:*::”l“x::x”l- .
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L
S —4.0 1 *+
3 +
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n

F1GURE 5. Comparison of a logarithm of the expected error by the methods.
Markers are means and bars are standard deviations of 100 replications. Red
circles denote a result by the estimator by DNNs, blue triangles are by the
kernel estimator with the Gaussian kernel, green triangles are by the kernel
estimator by the polynomial kernel, and purple squares are by the orthogonal
series estimator.

6. CONCLUSION AND FUTURE WORK

In this paper, we have derived theoretical results that explain why DNNs outperform other
methods. To this goal, we considered a regression problem under the situation where the
true function is piecewise smooth. We focused on the least square and Bayes estimators, and
derived convergence rates of the estimators. Notably, we showed that the rates are optimal
in the minimax sense. Furthermore, we proved that the commonly used orthogonal series
methods and kernel methods are inefficient to estimate piecewise smooth functions, hence
we show that the estimators by DNNs work better than the other methods for non-smooth
functions. We also provided a guideline for selecting a number of layers and parameters of
DNNs based on the theoretical results.

Investigating selection for architecture of DNNs has remained as a future work. While our
results show the existence of an architecture of DNNs that achieves the optimal rate, we
did not discuss how to learn the optimal architecture from data effectively. Practically and
theoretically, this is obviously an important problem for analyzing a mechanism of DNNs.
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APPENDIX A. PROOF OF THEOREM [I]

We provide additional notation. \ denotes the Lebesgue measure. For a function f : I” — R,
| fllre = Sup,erp is a supremum norm. | flz2 = | f|lz2¢) is a L?(A)-norm with the Lebesgue
measure.

With the set of observations, let | - |, and be an empirical norm such as

n

[l =n7" >0 F(X).

i=1
Also, we define the empirical norm of random variables such as
1/2 1/2
Vin:= ot DV and [€ln:=[n" D &
i€[n] i€[n]

With a set F and a radius € > 0, we introduce a covering number as

N(e, Fo |- ) i= inf{ N | {fjepn, | = fil < evf € F.

with a norm || - |.
By the definition of the least square estimator , we obtain the following basic inequality
as

|v = FE2 < Y = fI2,
for all f e Fyn, (5, B, L). Since we have Y; = f*(X;) + &, we obtain

LF*+ &= FEIR < 15+ €=
By the simple calculation, it yields

~ 2 2 ~
IF5 = FH < = A1+ = D &R = F(X0)). (6)
1=1

In the following, we will fix f € Fyn, (S5, B, L) and evaluate each of the terms each of
the terms of the RHS of ([6) At the first subsection, we provide a result for approximating
f* € Fugap by DNNs. At the second subsection, we evaluate a variance of FF. At the last
subsection, we combine the results and derive an overall convergence rate.

A.1. Approximate piecewise functions by DNNs. A purpose of this part is to bound
the following value

If = 2y,

with a properly selected f € Fyn,(S, B, L). To this end, we consider an existing © with
properly selected S, B and L. Our proof of this part is obtained by extending a technique by
Yarotsky| (2017) and Petersen and Voigtlaender| (2017)).

Fix f* € Fujap such that f* = > \nfrley with fi and R} for m € [M]. To
approximate f*, we consider neural networks ©,, and ©, ,, for m € [M], and their number
of layers and non-zero parameters will be specified later. We also consider a network O3
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. . e L , .
which approximates a multiplication and a summation, i.e. G,[Os](x1, ..., T, 2], ..., Thy) &

Zme[M] Ty,
We evaluate a distance between f* and a combined neural network G,,[03](G,[01](-), G,[©2](-))
as

IF* = GulOsl(GulO5a](), s GalOpar] (), Gyl Ora] (), s Gy Or 1] (1)) 22

= | 20 Sodes = GulO3)(GylO7a] (), s GylOfa] (), GylOra] (), oy Gy[Orad](4)
me[M]

< 2 S ® gz — Z GO 7.01] @ Gy [Or1]
me[M] me[M] 12
+ Z Gn[@f,m] ® Gn[@hm]
me[M]
— Gy[Os](Gy[O7a](), s Gyl Ofaa](), Gyl Ora](-), s Gyl Orar] ()
< Z Hf:;z ® 1R$‘n - Gn[e)f,m] & Gn[@r,m]HLz
me[M]
+| 2 GalOsm] ® GO
me[M]
— Gy[Os](Gy[O4a](), s GulOfu](), GylOra] (), o Gyl Orar] ()
< Z H(f:;l, - Gn[@f,m]) ® Gn[@r,m]HLZ + Z Hf::, ® (1Ri“n o Gn[GT,mDHm
me[M] me[M]
+ Z Gn[@f,m] ® Gn[@hm]
me[M]
— Gy[Os](Gy[O7a](), s Gyl Orar](), Gyl Ora](-), o Gyl Orar] ()
=: Z Bl,m + Z Bg,m + Bs. (7)
me[M] me[M]

We will bound B,, 1, B2 for m € [M] and Bs.
About the term B; ,,, for m € [M], we apply the Cauchy-Schwartz inequality and obtain

H(f;; - Gn[@f,m]) ® 1R§’§LHL2 < Hf:;z - Gn[@f,m]”L2 ”Gn[@r‘,m]HL2 .

By Theorem 1 in |Yarotsky| (2017)) and Theorem A.8 in |Petersen and Voigtlaender| (2017)), we
can assure that there exists a neural network Oy, with [©,,[o < C}GD/B, 1©fm|re < e
such that ||f — G,[Ofm]ll;2 < €. About |G,[O;m]/;2, we will employ a neural network
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in Lemma 3.4 in Petersen and Voigtlaender (2017) and use the result that the G,[©,.,,] is
uniformly bounded by 1. Hence,

1/2
Gulornlly < ([ 1a) <1
[0,1]P

Combining the results, we obtain
Bl,m < €.

For evaluating the term By, for m € [M], we consider decomposition of R,,. As the same
discussion, we have

[ £ ® (Lrg, = Gol®rm))] o < IFilli2 15, — GulOrml 2

m

Since f* € HP, there exists a constant Cy > 0 such that | f* ;. < Cy. We divide R,, into J
parts such as R, j,j € [J]. Also, we describe boundaries of R,, ; by 27 + Q horizon functions
with finite @Q € N. Here, a horizon function & : [0,1]” — {0, 1} which is defined as

h=Y(x; + f'(x9,...,2p), T2, ..., Tp),

where U is the Heaviside function, i.e. ®(x1,...,2p) := iz >03(21, ..., zp), and f' € H*([0,1]P71).
We consider horizon functions hy, ;j for k € [2P + Q] and represent 1g,, by [ fm s To
approximate the product of horizon functions, we consider that ©,.,, is constructed by a
network for summation © ., for multiplication ©, and a network for horizon functions ©,y, ;.
The approximation error is written as

H ]'Rm - Gn [@r,m] ”L2

Z LR,
JelJ]

— G041 1(Gy[O%](Gy[Omaa] (), -

Gyl Oma2045](); s GolOx Gy Om s ](), ooy Gyl O s2r 151())

12

- Z 1Rm,j - Z Gﬁ[@/x](Gn[@m,j,l](')’ "'7Gn[@m,j,2D+S](‘)>

L2

<2 ) L1 Amis= ] GrlOnislt)

jelJ] ||ke[2P +8S] e[2P +5] 2

+Z [T Gul®mjsl() = GolO. NG [Omjal(-): s GylOpjars1(+))

jelJ] ||ke[2P +S]

Z Bgm] + Z B -

L2
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To evaluate By, ;, we apply Lemma 3.4 in [Petersen and Voigtlaender| (2017). By setting
Om,j i as O, hence we obtain 0 < G,,[0,, jx|(z) < 1. Thus, combining the fact 0 < Ay, ;4 () <

1, we have
1_[ hm]k 1_[ G m]k )

ke[2P +Q] ke[2P +Q]

= > Ahgr() = GolOm sl ()} H hmgk [ GalOmjsl()
k[P +Q) Wel K\ K]

< )] {hm,j,k(')—Gn[@m,j,k](')}‘
ke[2P +Q)]

Then, we have

B27m7j < Z ||hm,j,1€ - Gn[@mhﬂ}k]HLQ < (2D + Q>€7
ke[2P+Q)]

by applying Lemma 3.4 in [Petersen and Voigtlaender| (2017)).

To evaluate By, ;, we apply Lemma |1| for multiple production.

Lemma 1. Fiz n > 0 arbitrary. Then, for each € € (0,1/2), there exists a neural network
Oy for a D'-dimensional input with at most (1 + logy, D')/n layers such that [©y]¢ <
CoD'e™ ||©|l < €% with some constants Cxr > 0 and s € N, and it satisfies

H XTq — (.1'1, ...,$D/) < (D/ — 1)6

de[D’]

Proof. We employ the neural network for multiplication ©4 as Proposition 3 in |Yarotsky
(2017) and Lemma A.2 in [Petersen and Voigtlaender| (2017) and consider a tree-shaped
multiplication network. There are D’ — 1 multiplication networks and the tree has 1 + log, D’
depth. O

Using the result, we set ©', and bound B, ;

B;m]\( +Q_1)6

Combining the results about By, ; and B we obtain

2,m,j
Bom <2J(2° +Q — 1/2)e.
About the term Bj, we consider Lemma [2]

Lemma 2. Let n > 0 be arbitrary. Then, for each € € (0,1/2), there exists a neural network
O3 for a 2D’-dimensional input with at most 1 + L layers where L > 1/n and D' + Cx D'e™"
non-zero parameters such that |©3| s, < €7, and it satisfies

Gn[@;g](l'l,...,l‘QD/ — Z LAl prad < /E.
de[D']
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Proof. Let us define the function by the neural network G, [O3] as
Gn[@S](x) = Gn[@+](Gn[9x]($1,ﬂ7D'+1)a ~--,Gn[@x](9€D',!E2D/))7

where O, is defined in Proposition 3 in Yarotsky| (2017) and Lemma A.2 in Petersen and
Voigtlaender| (2017)). Here, © is a summation network such that

1
@+ = (A7b): 70

Then, we evaluate the difference as

Gn[@3](9€1,---,$20 - Z TqZad

de[D’]

= | > G020, Tprsa) = ), TaTprsa

de[D'] de[D']
Z |GH[O©x])(%d, Tprsa) — TaTprval
de[D']
/
< D'e.

Here, the last inequality follows Proposition 3 in |Yarotsky| (2017)).

Let ©3 be the neural network defined in the statement, then we obtain that
B3 < 2Me.

We combine the result about By ,, By, and Bs, then define f € Fyn,(S, B, L) for approx-
imating f*. About ©, it contains Oy, for m € [M], thus we known ||©1 ]y < C’}MED/B. Here,
we set € = ¢;n~/PP) with a constant ¢1, thus we conclude |01 < Cpey MnP/PP) and
101 < ¢ 25n258/28+D) - About Oy, it contains g, .. for m e [M],J € [J],k € [2P + Q],
O, and ©/,. Hence, we know [Os]o < MJ(2P + Q)( 2AD-D/e 1 e ) + MJ. We set
€ = cyn~/(2a+2D=2) with ¢, and n = 2(D — 1)/a, then we have ||Oz]¢ < coMJ (2P + Q)(1 +
207 )n2P=1/2a+2D=2) L M T and ||Oy], < con?¥/(20+2D=2) " Ahout O3, we already define it
in Lemma [2] such that ©3 has 1 + L layer with L > 1/p and 193] = 2M (1 + Cxe™ ™). Then,
we set = max{2(D — 1)/a, D/B} and € = cymax{n=?/(26+D) pn=c/Ca+2D=21 with ¢53 > 0.

We combine ©1, 0, and O3 as a unified neural network o. Here, we know that the number
of layers is at most

Ca(l + [logy(1 + B)])(1 + B/D) + Chlog,(2 + ) (1 + /D)
+ (1 +1ogy (2P + Q))a/D + (1 + log, M) max{3/D,a/2(D — 1)}
< Op(1 + logy(max{l + 3,2 + a,2° + Q, M}))(1 + max{B/D, a/2(D — 1)}).
Also, the number of non-zero parameters H@Ho is at most
Chey MnP/COP) ey M J (2P + Q)(1 + 2C7 )n*(P=D/o+2D=2) 4 yp g
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+ C32M(1 +C, maX{nD/(26+D), n(2D—2)/(2a+2D—2)})
< CSM(l + J(QD + Q) maX{nD/(26+D)7n(2D72)/(2a+2D72)})7 (8)

with a constant Cg > 0. Then, there exists a function by the neural network f := G,[©]
which satisfies

1= fle
< Mn PCBED) L o TM (2P + Q — 1/2)n =/ et2D=2) 4 o\ max{n~#/(28+D) p-e/let2D=2)
< 2JM (2P + Q — 1/2) max{n=#/(@8+D) po/la+2D=2) 9)

A.2. Evaluate an entropy bound of the estimators by DNNs. Here, we evaluate a
variance term of | f~ — f*||, in (6) through evaluating the term

23 are) - fx)|.
i[n]

To bound the term, we employ the technique by the empirical process technique (Koltchinskii,
20006; |Giné and Nickl, 2015; [Suzuki|, 2018)).

We consider an expectatlon of the term. Let us define a subset F' NN © Fyng(S,B, L) as

Fans = {f — FLilf = fola <o, fe Fnnn(S, B, L)}. Here, we mention that f € Fyy., is
bounded by providing the following lemma.

Lemma 3. For any f € F NN, with an activation function n satisfying Lipschitz continuity
with a constant 1, we obtain

| flle < By,
where By > 0 is a finite constant.
Proof. For each ¢ € [L], consider a transformation
fo(x) :==n(Apz + by).
When ||z], = B, and | vec(Ay)|w, [|be]w < B, we obtain
| felze < |Aex + byl|loo < D¢B.B + B.

Let D := maxse[r) D¢, when iteratively we have
Wz < Z H )
L]u{0} t'e
by applying that |z], < 1 for an input. O

Due to Lemma (3| with given {Xj}c), we can apply the chaining (Theorem 2.3.6 in Giné
and Nickl (2015])) and obtain

5/2
OB | sup 2 & f (X)) \S\fT/QJ V108 2 (€', Fa (S, B, L), | - |, )de'

J'€FNNs ze
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Here, to apply Theorem 2.3.6 in |Giné and Nickl (2015), we set n~? Dicrn i (Xi) as the
stochastic process and 0 as X (tg) in the theorem. Then, to bound the entropy term, we apply
an inequality

N (e, Fana |- )

< N(e, Fng(S, B, L), | - | =)

< log N(e, Fnny (S, B, L), || - =)

2(L+1)N 2)
€

<(S+1)log<

where the last inequality holds by Theorem 14.5 in |Anthony and Bartlett| (2009) and Lemma
8 in Schmidt-Hieber| (2017). Then, we obtain

1 , oS+ 16 L+ 1)N?
2E¢ | sup |- Z (X)) | <4v2 72 (log ( 5 ) + 1) : (10)
freFuns | i€[n] n

With the bound for the expectation term, we apply the Gaussian concentration inequality
(Theorem 2.5.8 in |Giné and Nickl| (2015)) by setting n~! Diepn) &if'(Xi) as the stochastic

process and 6% = | f||2 be B* and obtain

1 — exp(—nu?/20%5?)

1 1<
FreFnns | ieln] freFyns | imt
1 VS + 16 L+ 1)N?
<Pre[4 sup |- Z GI'(Xy)| < 8v/2Z 1/—;_ (log ( +5 ) + 1) +ul|, (11)
fIEﬁNN,é n i€[n] n

for any u > 0. Let us introduce the following notation as

2V 1
V, = 8\/§i.

2

To evaluate the variance term, we reform the basic inequality @ as
=2 ) = 080) 17 = < - 1
and apply an inequality |/ — f| < |f = £*I7 + |/* = J*|7. then we have
2P0 00 + I =1 SR <=
then we have

—% D &(HX) = F(X0)) + %HF — fIZ <20 - f (12)
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Let we consider a lower bound for —2 Diefn] fi(fL(Xi) — f(X3%)). To make the bound

be valid for all f € Fyn, (S, B, L), we let & = max{|f~ — fln, V,}. Then, we obtain the
bound

23 &(Frx) - £(x)
ieln]

< maX{HJ?L — flln, Vi) {Vn <10g(L+—1)N2 + 1)} +u

Va
1 5 2 L +1)N? 2
< 2 (maX{HfL - an,Vn}> +2 {Vn (log% + 1)} + u,
by using zy < imz + 2y%. Using this result to (12)), we obtain

(L +1)N?

2
1 ~
1 o - L 2<2 * 2‘
D ) - g <21 -

_i (max{HfL — flln, Vn}>2 -2 {Vn (log

If | f£ — f|n = V, holds, we obtain

(L+1)N?

2
1 -~
L) —u+ =2 = FI2 < 2| - fI2
v +)} ut gl f" = fla <20 = 1l

1 -
-7 = 12 = 2{ v o
Then, simple calculation yields

(L+1)N
Vi

2
17— < 4{vn (1og - 1)} f2u 4l - fI2 (13)

n

If HfL — f|n < V,,, the same result holds.

We additionally apply an inequality %H]?L — 3 < | F/F = fI2 + 172 = fI2 to ([13), we
obtain

Va
with probability at least 1 — exp(—nu?/2026?) for all u > 0.

2
- <ol - s (e B R L ) s g

A.3. Combine the results. Combining the results in Section and we evaluate an
expectation of the LHS of (14)), i.e. |f% — f*|r2(py). To this end, we substitute f in Section
into f in and obtain

dPx

2| '_*Qd _ '_*Qd)\_\ '_*22 ,
Bx[If s8] = | G-rranc= |G <l - riE s ()
(15)

by the Hélder’s inequality. Here, px is a density of Px and sup,e(o 1o px () < Bp is finite by
the setting.
Then, for all n € N and u > 0, we have

|5 = e py
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: L+1)N? ?
< 10Bp|f — f*3. + 8 {Vn (log% + 1)} + 4du

<ATPM2(2P + Q — 1/2)* max{n 2%/(28+D) p—o/(a+2D-2)y
2(S+1 L+1)N? 2 40,

1287 +)<log( + 1) +1) +
n Vn n

where u = C,/n with a constant C, > 0. Here, we know the number of non-zero parameters
S < CsM(1 + J(2P + Q) max{n=P/(+D) j=2D=2/(2a+2D=2)1) " Then, we substitute it and
obtain

15 = 1)

Y

2
< {4J2]\/[2(2D +Q—1/2)? +12802CsM (1 + J(2P + Q) <1Og (LﬁLV—l)NZ n 1) }

~28/(28+D) p—a/(a+2D-2)y | 1280% + A0,

x max{n M

n

APPENDIX B. PROOF OF THEOREM

We follow a technique developed by [van der Vaart and van Zanten| (2011) and evaluate
contraction of the posterior distribution. To this end, we consider the following two steps. At
the first step, we consider a bound for the distribution with an empirical norm |- ||,,. Secondly,
we derive a bound with an expectation with respect to the L?(Px) norm.

In this section, we reuse f € F, NNy(S, B, L) by the neural network © which is defined in
Section . By employing f, we can use the bounds for an approximation error |f* — f| L,
a number of layers in ©, and a number of non-zero parameters |©|o.

B.1. Bound with an empirical norm. Step 1. Preparation

To evaluate the convergence, we provide some notions for preparation.

We use addition notation for the dataset Yi., := (Y1,...,Y,) and Xy, := (X1, ..., X,,) and a
probability distribution of Y., given Xj., such as

Pry= H N(f(Xz‘)aUQ),
i€[n]

with some function f. Let p, ¢ be a density function of P, ;.
Firstly, we provide an event which characterizes a distribution of a likelihood ratio. We
apply Lemma 14 in [van der Vaart and van Zanten| (2011)) we obtain that

n Y:n *

P ([ 22052kt (7) > exp(or g1 = 11 <) ) 2 1= exp(onr?s),
pn,f* (Yln)

for any f and r > 0. To employ the entropy bound, we will update II;(f : |f — f*||l, <)

of this bound as IT;(f : |f — f|ze < 7). To this end, we apply Lemmathen it yields the
following bound such for ||f — f*|,, as

1= exp(=nr?/B}) < Prx (| = | < | = Flue + Byllf = e + 7).
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for any r and a parameter B; > 0. Using the inequality @D for || f — f*|z2, we define €, as
= |f = f*ees

and also substitute r = B,e,, then we have

1= exp(—nB2e/B2) < Prx (If = f* < If = floe +2Byer ).

Then, we consider an event &, as follows and obtain that

n Y:n ;
Pn,f* (5T) = Pn,f* <J %dﬂf(f) = exp(—rQ)Hf(f : ”f — f”Loo < Bpen)>

>1— exp(—nQBiei/S) — exp(—nBﬁei/Bﬁ), (16)

by substituting r = 3B,¢,.

Secondly, we provide a test function ¢ : Yj., — z € R which can identify the distribution
with f* asymptotically. Let E, ¢[-] be an expectation with respect to P, . By Lemma 13 in
van der Vaart and van Zanten| (2011)), there exists a test ¢ satisfying

En g [¢r] < ON(r/2, Fny(S, B, L), | - |n) exp(—r7/8),

and

sup ns[l = ¢r] < exp(=1?/8),
P

for any r > 0 and j € N. By the entropy bound for N'(r, Fyn (S, B, L), ||-|») < N(r, Fyn (S, B, L), |-
| L), we have

B, p«[¢r] <7 '8(L + 1)N? exp(—r?/8 + S + 1).

Step 2. Bound an error with fixed design.
To evaluate contraction of the posterior distribution, we decompose the expected posterior
distribution as

Eps [T (f 2 | f = f* | = der|Dy)]
S Eps (o] + Epr [E] + Epe [IL(f 2 [f — £l > der| Do) (1 — @) 1g, ]
= A, + B, +C,.

Here, note that a support of Il is included in Fyn,, (S, B, L) due to the setting of II.
About A,,, we use the bound about ¢, substitute y/ner into r, then obtain

< 18(y/ner) M (L + 1)N? exp(—ne’r?/8 + S + 1).
About B,,, by using the result of &, as and substitute y/ner into r, then we have
B, < exp(—n9B2e. /8) + exp(—nBje.,/B}).
About C,,, we decompose the term as

$Funn(s.B.0) T f*|n>4er}pnf(Y1.n)dHf(f)( o
S]:NN7,SBL Do, f (Y1) dIL¢(f) r)Le,

C, = B [Ef [
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f( 1:n
§ 1{\\f—f*un>4er}p—f* 5yl (f)
Pn, f Yl n
SJ: P, % (Yiin) dll;(f)

ot (Yo
FEFN N (S.BLY| f—f* > 2er Prof (Y1)

= EX En,f* (1 — Cbr)]-&

x exp(ne’r ) (f : |f = fllo= < Byea) (1 - cbr)ler”

n.#(Ya
=Ex|E, ¢« J Ly)dﬂ (f)
FeFN N (S.BLLY:| f—f* > Zer Prof (Y1)

x exp(ne*r? — log Oe(f:|f— fHLoo < Byen))(1 — gbr)l(gT]]

by the definition of &,. Here, we evaluate —logII¢(f : | f — floe < Byey) as
—1og I (f : |f = fll= < Byea) < ~log (O : |© = Ol < LyByen) < Slog((BrLyea) ™),

where O is the parameter which constitute f and Ly is a Lipschitz constant of G,[-]. Thus,
the bound for C,, is rewritten as

pn,f(}/in)

¢ <y | PRI LB (L= 601 ] dI ()
FEFaN (8B LY S~ ¥ >Zer Prp* (Y1in)

x exp(ne*r? + Slog((Bfoen)l))]

r

2
< exp <n627’2 + Slog((ByLyen)™") — §> ,

here, we introduce 7’ is a r for defining ¢, to identify r for &,.. Here, we substitute ' = 4y/ner,
then we have

C,, < exp (Slog((ByLye,)™") — 2ne’r?)
Combining the results about A, B,,, C,, and D,,, we obtain
Ep[Tp(f 2 | f = [0 = der|Dn)]
< exp(—ne’r?/8 + S + 1 + log 18(v/ner) ' (L + 1)N?)
+ exp(—nQBiei/S) + exp(—n pei/Bf) + exp (Slog((Bfoen)’l) — 2n627’2)
< 2exp (— max{9B§/8, Bg/BJ%}nei)
+2exp (2ne*r — 2 + Cfmax{n ™ P/CATD) p=2D=2/Ret2D=201 160 4 1) |

by substituting the order or S as (§) as S = C%max{n~P/(2+D) p=2D=2/2a+2D=2)1) where
Cy=CsM(1+ J(2P + Q) and C% is a constant as C% = C logmax{—D/(2B + D),—2D —
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2/(2a + 2D — 2)})/(B¢Ly). By substituting » = 1 and
€ = ey logn = 2JM (2P + Q — 1/2) max{n #/@F+D) p=a/(@t2D=204 140y
then we obtain
Ep [y (f 2 |If = f*]n = C. max{n_ﬁ/(2/3+D),n_o‘/(a+2D_2)}logn|Dn)] — 0,

as n — oo with a constant C, > 0.
O

B.2. The bound with a L?(Px) norm. We evaluate an expectation of the posterior
distribution with respect to the | - | z2(py) norm. The term is decomposed as

Epse [T (f 2 |f = f*|r2pye) > 7€[Dn)]
S Epx [Lee] + Eps 1, T1(f : 2] f = f*]n > re[Dy)]

+ Eps [1e,11p(f 2 20 = fl22(py) > re > [f = £* ]l Dn)]
—: I, + I, + ITI,.

for all € > 0 and r > 0. Since we already bound [,, and I1, in step 2, we will bound I11,.
To bound the empirical norm, we provide the following lemma.

Lemma 4. Let a finite constant By > 0 satisfy By > |f = f*| . Then, for any r >0 and
f e Fnnn(S, B, L), we have

1= exp(—nr?/B) < Prx (If = £l < If = flos + Bylf = £z +7)

Proof. We note that the finite By exists. We know that f € Fyn, (S5, B, L) is bounded by
Lemma . Also, f* € Furya,p is bounded since it is a finite sum of continuous functions with
compact supports.

We evaluate ||f — f*|, as

1f = £ < 1 = Fla+ 1 = £l < 1f = Flose +1F = £
To bound the term || f—7f |, we apply the Hoeffding’s inequality and obtain
1 exp(-2nr/28) < Prx (If = < 1f = Pl +7)
Using the inequality , we have
Prxc (If = Fln < 1f = F¥luze +7) < Prxc (I = Sl < Byllf = f*laz +7)

then obtain the desired result.

By Lemma [{], we know the bound
1 —exp(=2nr"/2B}) < Prx (|f = [ < |f = ez +77)
for all f such as ||f|z» < B. WE set v’ = | f — f*||12(py), hence

BQ

nllf — £*|2,
1—exp (— BN < Prx (If = f*n < 20F = F¥lizey)) -
f
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Using this result, we obtain

11, <Ex |E, f DoY) oy,
FEFNNm(SB.LYI T~ 2y >res2|f— 1% Prp (Vi)

X exp <n627"”2 —log I (f : |If = fll= < Bpen)>

Prx (If = f*lzzpy) > 21 = £7]n) dILe(f)

< J\
fe]:NN,n(SaB’L):Hf_f*”L2<px)>""5

x exp (ne’r? + Slog((ByLyse,)™"))

nrle?
< exp <n62r”2 + Slog((ByLyen)™") — 32 > ,
f

where r” is a parameter for defining £.. We substitute r” = r/y/2B, then we have

nre?
II1, < exp <Slog((Bfoen)1) — 5 )

Following the same discussion in Section |[B.1] we combine the result and obtain
I, + 11, +11I,
< 3exp (—max{9B}/8, B2/B}}ne.) + exp (Slog((BfLye,) ') — nr’e’ /2B7)
+ 3exp (2ne’r — 2 + C4 max{n~D/@A+D) =2D=2/(2a+2D=21y 150 4 1),
and setting
€ = ey logn = 2JM (2P + Q — 1/2) max{n #/GF+D) p=o/(@t2D=203 1405

yields the same results.

ApPPENDIX C. PROOF OF THEOREM [3

We discuss minimax optimality of the estimator and its convergence rate. We apply the
techniques developed by [Yang and Barron| (1999) and utilized by Raskutti et al.| (2012).
Let Far,ya,8(0) € Furgap be a packing set of Fyy ja s with respect to || - |2, namely, each

pair of elements f, f’ € Fys ja p satisfies | f — f’||,2 = 0. Following the discussion by Yang and
Barron (1999), the minimax estimation error is lower bounded as

_ ) _ )
min max Pr — f* > ") >min max Pr — f* > 2.
7ofreFvas <”f Pl 2> TpreFugas® (f AL 2)

Let f':= argmin , ©) | F = f| be a projected estimator f onto Firea(0). Then, the

E}N—]M,J,a,,B
value is lower bounded as

_ 5.
win mox Page (17~ Pl > )
I *eFar g,0,8(0) 2

>min  max  Pry(f # f)
I" feFu,g,a,6(9)
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~

> minPry_ o(F = 1),
f/

where f is uniformly generated from F M,J.0,8(0) and Pry denotes a probability with respect
to the uniform distribution.

We apply the Fano’s inequality (summarized as Theorem 2.10.1 in |Cover and Thomas
(2012))), we obtain

o % I(Fy; D,) +log2
10g [ Fit,s0,6(0)]
where I (Fy; Y1.,) is a mutual information between a uniform random variable Fy; on F M.J0,8(0)

and Y7.,. The mutual information is evaluated as

[(FUa}/in)

B m Z J (EFUpZ?Z Fy (Y>1 n)]) ns{Yin)

feFM, 70,85
pn,f(}/i:n) )
< max log ( dP, (Y1)
fe-%M,J,a,ﬁ(é) f EFU [pn,FU (Yin)] f

max max flog ( — P, (Vien) ) dP, (Y1)
(d)

FE€FM, 1,0,8(8) F'€FM, 10,8 |FM7J7OC,6 (5) | _1pn7f/ (Yln)

- pn,f(len>
= max log | Fas,g0,8(0)| + Jlog (—
FF€F 0, .008(6) P,g (Y1)

)

N

) dP, (Y1)

Here, we know that

10g | Far, 0,8 (0)| < 10g N (8, Fuggaps | - |12)s

and

log | ———+% | dP, +(Y1.,,) < =E PP < s
J g(pn,ff(m> 1Y) < SEx[If = F12] < 5

since f, f/ € .%M7J’a7ﬁ<5).
We will provide a bound for log N'(8, Fas ya.s, | - ||12). Since Far jap is a sum of M functions
in 1 74,3, we have

log N (0, Farsap, | - [12) < MIog N (6, Fuyap, | - 12)-

To bound log (8, F1.jap | - |12), we define Z,, j := {1z : I? — {0,1}|R € Rq.s}. We know
that Fy ja5 = H(I”) ® Z,.;, hence we obtain

log N' (8, Frsa, | - [12) < log N (8, H(I), || - |z2) +1og N (8, Zas, || - | 2)-

By the entropy bound for smooth functions (e.g. Theorem 2.7.1 in van der Vaart and Wellner
(1996))), we use the bound

log N'(&, H(IP), | - || 2) < Crd™P/P,
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with a constant C'y > 0. Furthermore, about the covering number of Z,, ;, we use the relation

11— 1p[2 = f (Lr(z) — 1p(2))de = j (1n(z) - 1p(2))dx

- |, 10 = L)x = (R R),

where R, R' € R, ; and d; is a difference distance with a Lebesgue measure for sets by Dudley
(1974). By Theorem 3.1 in |Dudley| (1974), we have

log N (8, Ry, di) =< Cro~ P71/,
with a constant C'y > 0. Then, we bound the entropy of Z, ; as
og N'(8, Lo 7, || - | 22) < log N'(6%, Ry, di) < Cr6 2P~ 1/
Substituting the results yields
log N' (8, Fargaps | - |22) < MCyo PP 4+ MCy§—2P~ /e,

Then, we provide a lower bound of Pry_( e f ) as

_ . 26 + log 2
- ! 2
PrfNU(f . f> > M maX{CH(S*D/B, C)\572(D71)/a} '

By substituting 6, = max{n2#/(28+D) n=e/(a+2D=2)1 " e finally obtain the statement of
Theorem 3l

APPENDIX D. PROOF OF PROPOSITIONS

D.1. Proof of Proposition [I} About the polynomial kernel, since the RKHS of the kernel is
the Sobolev space, we can find f* € Fu 5.5 which is not differentiable. To see the properties
of the RKHS, see Berlinet and Thomas-Agnan| (2011). About the Gaussian kernel, we consider
f* =1g € Fargap, where R < I is some open set. By Corollary 4.44 in Steinwart and
Christmann (2008), f* is not contained in the RKHS by the Gaussian kernel. Hence, we
obtain the results.

O

D.2. Proof of Proposition We will specify f* € Fara,p and distribution of X, and
derive a convergence rate of the estimator by the Fourier method.

For preparation, we consider D = 1 case. Let X be generated by a distribution which
realize a specific case X; = i/n. Also, we specify f* e Fas a5 as

(@) = 1205,
with 2 = (21, 2,) € I?. We consider a decomposition of f* by the trigonometric basis such as
¢;(x) = { /2cos(2mkx) if j = 2k,
V2sin(2rkr) if j = 2k + 1,



32 DNNS FOR NON-SMOOTH FUNCTIONS

for k € N. Then, we obtain
> oy
jeNuU{0}

Here, 07 is a true coefficient.
For the estimator, we review its deﬁnition as follows. The estimator is written as

= > b

jelJ1o{0}

is a coefficient which is defined as
1
== ) Yigi(Xy)
n .
i€[n]

Also, J € N are hyper-parameters. Since ¢; is an orthogonal basis in L? and the Parseval’s
identity, an expected loss by the estimator is decomposed as

Epo |17 = oo | =B | D (8- 02

_jGNu{O}

=Eps | Y (6,022 + (62

where (9]1 o

'e[J]u{O} j>J
- Z Ege [0 - 0] + 20002
J]u{0} j>J

Here, we apply Proposition 1.16 in Tsybakov (2009) and obtain

~ 2
1P = | = Y (%+p§)+2<9;‘>2
JjelJ

i>J

Y
[
=%
_l’_
M

je[J]u{O} j>J
2(J+1
_ocU+D + Y02,
n :
>J

where p; :=n~! Y F(Xi)@(Xi) — (f, ¢;) is a residual.

Considering the Fourier transform of step functions, we obtain 67 = -1

21y

1 1 1 1
D) =-S5V +1)=— > > ,
= J 42 472 weNolo) (J+1+Ek)2 " 4n%(J + 1)?

, hence

where W is the digamma function.
Combining the results, we obtain
2
Bpe [I77 = flisen | > =07+ mg s
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We set J = |cyn'/? — 1| with a constant ¢; > 0, then we finally obtain

. B 1
(17 = ) =07 (4 4 )

Then, we obtain the lower bound for the D = 1 case.
For general D € N, we set a true function as

[F= & 1is0sy
de[D]
Due to the tensor structure, we obtain the decomposed form
fr= Z Z Vitsnip ® Djas
j1ENuU{0} jpeNuU{0}

is a coefficient such as
Vitenin = H ejd’
de[D]

using 60;, in the preceding part. Following the same discussion, we obtain the following lower
bound as

where v;, ip

I = P = T D S 6

i>J
Then, we set J — 1 = |n'/?*P)| we obtain that the bound is written as
R ) D
[ = 1] =700 (024 7).

Then, we obtain the claim of the proposition for any D € N.
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