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Abstract

We study the necessary and sufficient complexity of ReLU neural networks—in terms of depth
and number of weights—which is required for approximating classifier functions in an L2-sense.

As a model class, we consider the set Eβ(Rd) of possibly discontinuous piecewise Cβ functions
f : [−1/2, 1/2]d → R, where the different “smooth regions” of f are separated by Cβ hypersurfaces.
For given dimension d ≥ 2, regularity β > 0, and accuracy ε > 0, we construct artificial neural
networks with ReLU activation function that approximate functions from Eβ(Rd) up to an L2 error
of ε. The constructed networks have a fixed number of layers, depending only on d and β and they
haveO(ε−2(d−1)/β) many non-zero weights, which we prove to be optimal. For the proof of optimality,
we establish a lower bound on the description complexity of the class Eβ(Rd). By showing that a
family of approximating neural networks gives rise to an encoder for Eβ(Rd), we then prove that one
cannot approximate a general function f ∈ Eβ(Rd) using neural networks that are less complex than
those produced by our construction.

In addition to the optimality in terms of the number of weights, we show that in order to achieve
this optimal approximation rate, one needs ReLU networks of a certain minimal depth. Precisely,
for piecewise Cβ(Rd) functions, this minimal depth is given—up to a multiplicative constant—by
β/d. Up to a log factor, our constructed networks match this bound. This partly explains the
benefits of depth for ReLU networks by showing that deep networks are necessary to achieve efficient
approximation of (piecewise) smooth functions.

Keywords: Deep neural networks, piecewise smooth functions, function approximation, sparse connec-
tivity, rate distortion theory, metric entropy.
AMS subject classification: 41A25, 41A10, 82C32, 41A46, 68T05, 94A34.

1 Introduction

Neural networks implement functions by connecting multiple simple operations in complex patterns.
They were inspired by the architecture of the human brain and in that framework probably first studied
in 1943 in [36]. A special network model is that of a multi-layer perceptron [44, 43], which can, in
mathematical terms, be understood as an alternating concatenation of affine-linear functions and simple
nonlinearities, arranged in multiple layers.

Recently, especially deep networks, i.e., those with many layers, have received increased attention,
due to the possibility to train them efficiently. In particular, given training data in the form of input
and output pairs, there exist highly efficient algorithms to adapt the network in such a way that the
network implements an interpolation of the training data and even generalizes well to previously unseen
data points, at least for many problems that occur in practice. This procedure is customarily referred
to as deep learning, [31, 20].

A small selection of spectacular applications of deep learning are image classification [27], speech
recognition [24], or game intelligence [15]. While networks trained by deep learning prove to be remark-
ably versatile and powerful classifiers, it is not entirely understood why these methods work so well. One
aspect of the success of deep learning is certainly the powerful network architecture. In mathematical
terms, this means that networks yield very efficient approximators for relevant function classes. Note
though that this ability to approximate a given function—or to interpolate the training data—does in
itself not explain why neural networks yield better generalization than other learning architectures. This
point, however, is outside the scope of this paper.
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This work extends the study of approximation properties of neural networks. We will focus specifically
on neural networks that have a certain activation function, which is possibly the most widely used in
applications—the rectified linear unit (ReLU). We will determine the optimal trade-off between the
complexity and approximation fidelity of neural networks when approximating piecewise constant or
piecewise smooth functions—function classes that, as we will elaborate upon below, resemble the classifier
function of a classification problem. Furthermore, we show that in order to attain this optimal trade-off,
one needs networks with a certain minimal depth depending on the smoothness of the functions and on
the dimension of their domain.

In the remainder of this introduction, we first motivate our choice of the class of piecewise constant
and piecewise smooth functions as functions of interest. Afterwards, we review related results concerning
the approximation of (piecewise) smooth functions, both by neural networks and more general function
classes. Then, we will clarify our notion of complexity of neural networks. Finally, we describe our
contribution and fix some standard and non-standard notation.

1.1 Classification with neural networks

Neural networks are used in a broad range of classification problems: Examples include image classifica-
tion [27], digit classification [23, 26, 35, 32] or even medical diagnosis [5, 8]. A comprehensive survey on
classification by neural networks can be found in [49].

The networks employed in these tasks take very high-dimensional input and assign a simple label to
each data point, thereby performing a classification. Thus, we perceive a prototype classifier function as
a map f : Rd → {1, . . . , N}, where N is the number of possible labels. In other words, the function class
of classifier functions is that of piecewise constant functions. A special case of particular interest is that
of binary classification, i.e., where N = 2, which is extensively studied in Part 1 of [2].

Admittedly, the model of a classifier function described above is not the only conceivable model.
Indeed, another point of view is to consider the classifier function as a conditional probability of the
sample having a certain label. In this regard, not piecewise constant functions but rather functions that
admit reasonably sharp but smooth phase transitions are the right model.

Which point of view one should adapt naturally depends on the application. To justify our approach,
we give one example where a classifier should indeed be piecewise constant. Consider the problem of
modeling or predicting some physical behavior. Precisely, let us consider the problem of predicting if a
material undergoing some known stress breaks or remains intact. If the underlying physical model is too
complicated, it might be reasonable to learn the behavior from data and apply a deep learning approach.
In this case, the classifier has two labels—broken and unbroken—and a potentially very high-dimensional
input of forces and material properties. Nonetheless, there will be a sharp transition between parameter
values that describe stable configurations and those that yield breaks. It is conceivable that one might
want to optimize the forces that can be applied, which means that the jump set should be very finely
resolved by the learned function.

1.2 Related work on approximation of piecewise smooth functions

We give a short overview of related work on approximation with neural networks and approximation
of piecewise smooth functions. In fact, piecewise smooth functions form a superset of the previously
described set of piecewise constant functions that describe classifiers, but it will turn out that they
admit the same approximation rates with respect to ReLU neural networks. Because of that, it is
natural to focus on the larger set of piecewise smooth functions.

One of the central results of approximation with neural networks is the universal approximation
theorem [25, 14] stating that every continuous function on a compact domain can be arbitrarily well
approximated by a shallow neural network, i.e., a network with only one hidden layer. These approxi-
mation results only show the possibility of approximation, but do not provide any information on the
required size of a network to achieve a given approximation accuracy. Other works analyze the necessary
and sufficient size of networks to approximate certain classes of functions, whose Fourier transform has a
bounded first moment [4, 3]. In [37], [41] it is shown that assuming a smooth activation function, a shal-
low network with ε−d/n neurons can uniformly approximate a general Cn-function on a d-dimensional
set with infinitesimal error ε. This approximation rate is also demonstrated to be optimal, in the sense
that if one insists that the weights of the approximating network should depend continuously on the
approximated function, the derived rate can not be improved. Note though that in [48, Section 3.3],
Yarotsky gives a construction where the weights do not depend continuously on the approximated func-
tion, and where the “optimal” lower bound is improved by a log factor, but using deep networks instead
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of shallow ones, and using the ReLU activation function instead of a smooth one. Nonetheless, this result
shows that the optimality can indeed fail if the weights are allowed to depend discontinuously on the
approximated function.

Except for the result of [48], all the results above concern shallow networks. However, in applica-
tions, one observes that deep networks appear to perform better than shallow ones of comparable size.
Nonetheless, at this point, there does not exist an entirely satisfactory explanation of why this should be
the case. Still, from an approximation theoretical point of view, there are a couple of results explaining
the connection of depth to the expressive power of a network. In [38] it was demonstrated that deep
networks can partition a space into exponentially more linear regions than shallow networks of the same
size. [16] analyses special network architectures of sum-product networks and establishes the advantage
in the expressive power of deep networks. Moreover, [45] shows the advantage of depth for networks with
special piecewise polynomial activation functions. An overview of a large class of functions that can be
well approximated with deep but not with shallow networks can be found in [42].

In [48], [46] deep ReLU networks are employed to achieve optimal approximation rates for smooth
functions. These results are very closely related to the findings in this paper. However, [48] and [46]
consider approximation in the L∞ norm, which would not be possible for functions with jumps since
ReLU networks always implement continuous functions. Finally, we mention [6], where it is demonstrated
that for the case of two-dimensional piecewise Cα smooth functions with Cα jump curves, α ∈ (1, 2],
neural networks with certain smooth activation functions achieve optimal L2 approximation. However,
these results do not cover the case of networks with a ReLU activation function and do not apply in
dimensions d ̸= 2.

To end this overview of related work, we also give a review on approximation theoretical results for
piecewise smooth functions by more general representation systems than neural networks.

Piecewise smooth functions are frequently employed as a model for images in image processing [10,
28, 18], which is why a couple of representation systems developed in that area are particularly well-
suited to represent these function classes. For instance, shearlets and curvelets provide optimal N -term
approximation rates for piecewise C2(R2) functions with C2 jump curves, [9, 29, 22, 39].

To obtain optimal approximation of two-dimensional functions with jump curves smoother than C2,
the bandlet system was developed, [40], which is a system consisting of properly smoothly-transformed
boundary-adapted wavelets that are optimally adapted to the smooth jump curves.

Another system, the so-called surflets [11], even yields optimal approximation of piecewise smooth
functions in Rd. This system is constructed by invoking a partition of unity, as well as local approximation
using so-called horizon functions. These ideas are also central to the approximation results in this work.

1.3 Our notion of optimality

To claim that our approximation results are optimal, we need to specify a notion of optimality. First of
all, we measure the size of networks mostly in terms of the number of non-zero weights in the network.
Then we adopt an information theoretical point of view, which was already introduced in [6, 7], but will
be refined and improved here. The underlying idea is the following: Under some assumptions on the
encodability of the weights of a network, each neural network can be encoded with a bit string the length
of which depends only on the number of weights of the network. For a given function class which can
be well approximated by neural networks of a given complexity, this gives rise to a lossy compression
algorithm for the function class; the error introduced by this compression algorithm depends on the
quality of approximation that can be achieved by the given class of networks over the function class.
This observation gives rise to an encoding strategy for function classes that are well-approximated by
neural networks of limited complexity. In this way, the description complexity of a function class provides
a lower bound for the size of the associated networks. Similar ideas associated to lower bounds for the
approximation with certain representation systems were used in [17, 21].

Certainly, other means of establishing lower bounds exist. For instance, in [48] known bounds on
the Vapnik-Chervonenskis dimension or fat-shattering dimension of networks [2] are used to obtain lower
bounds on the achievable approximation rate for a large variety of function classes.

The argument in [48], however, only yields a lower bound regarding the approximation with respect
to the L∞ norm. This is not appropriate in our setting as we study L2 approximation. Additionally,
to obtain sharp lower bounds on the approximation using neural networks as in [48], it is necessary to
impose an upper bound on the depth of the network. Such an assumption is not required in our approach.
On the downside, we require an encodability condition on the weights. A final argument in favor of our
optimality criterion is that it is independent of the chosen activation function ϱ (as long as ϱ(0) = 0),
while the arguments in [48, 2] are specific to piecewise polynomial activation functions. A more in-depth
comparison of the two approaches is given in Section 4.
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A further notion of optimality concerns the number of layers which is necessary to achieve a certain
approximation rate by neural networks of that depth. In [42] an overview is given about function classes
that can be approximated well by deep networks and which cannot be approximated well with shallow
networks. Furthermore, Yarotsky [48] shows that a certain depth is needed to approximate nonlinear C2

functions with a given approximation rate with respect to the L∞ norm.
We will discuss this notion in more detail in Section 4. In particular, we will show that the result of

Yarotsky can be generalized from L∞ approximation to approximation in the Lp-sense, for 1 ≤ p < ∞.

1.4 Our contribution

We establish optimal approximation rates for piecewise Cβ functions, β ∈ (0,∞) on Rd, d ∈ N≥2 by
ReLU neural networks in terms of the number of non-zero weights and the number of layers. As two
special cases, our results cover the approximation of Cβ functions and of piecewise constant functions
for which the different “constant regions” are separated by hyperplanes of regularity Cβ .

A simplified but honest summary of our main results is the following: For a given piecewise Cβ

function f : [−1/2, 1/2]d → R and approximation accuracy ε ∈ (0, 1/2) we construct a ReLU neural
network N constr

ε,f with not more than c · ε−2(d−1)/β non-zero weights and c′ · log2(β + 2) · (1 + β/d) layers
approximating f up to L2 error ε. Here c′ is an absolute constant, while c might depend on d and
β. Furthermore, we show that the scaling behavior of the number of weights with ε is optimal in the
previously described sense, i.e., it cannot be improved if one insists that each weight can be encoded
using only O(log2(1/ε)) bits. Finally, if (Nε)ε>0 is a family of networks (which are not required to
have encodable weights) meeting this rate for a nonlinear function f , then Nε needs to have at least
max{1,β/(3d)} layers, for ε small enough.

The optimality of the approximation rates is derived by lower-bounding the description complexity
of the class of piecewise constant functions and by establishing a transference result that yields lower
bounds on the sizes of approximating networks.

We observe that the depth of the optimally approximating networks does not depend on the approx-
imation accuracy, but is influenced only by the dimension of the input space and by the regularity of the
functions. Note that the depth of the networks N constr

ε,f constructed above coincides (up to a log factor)
with the lower bound max{1,β/(3d)} from above. This observation offers some explanation for the pre-
viously observed efficiency of deep networks: With increasing structure or regularity of the underlying
signal class, the best achievable approximation rate gets better, but more depth is required to achieve
this optimal approximation rate.

The approximation results can be found in Section 3, and the lower bounds for the number of weights
and the number of layers are presented in Section 4. In Section 2, we precisely define the notion of
neural networks, and we introduce a kind of calculus for these networks, which in particular covers their
composition. This calculus will greatly simplify subsequent proofs.

To not disrupt the flow of the presentation, all results and their interpretations are presented on the
first twelve pages of the paper, and almost all proofs have been deferred to the appendix: Appendix A
contains the proofs related to Section 3, while the proofs for Section 4 are presented in Appendices B
and C. Appendices D and E contain two technical results that are of minor interest, but nevertheless
needed for some of our arguments.

Finally, we remark that our construction of approximating neural networks relies on two technical
ingredients which are possibly of independent interest for future work:

First, we show (see Lemma A.2) that neural networks can realize an approximate multiplication:
One can achieve |xy − N(x, y)| ≤ ε using a ReLU neural network N with L layers and O(ε−c/L) non-
zero weights, for a universal constant c > 0. A similar result (see Lemma A.4) then holds for general
polynomials. We emphasize that it is not a new result that ReLU neural networks can realize an
approximate multiplication; this was already observed by Yarotsky [48]. What is new, however, is that
the depth of the network is independent of the approximation accuracy ε; the depth only influences the
approximation rate.

Second, we show (see Lemma A.5) that neural networks can implement a “cutoff”, i.e., a multiplica-
tion with an indicator function χ[a1,b1]×···×[ad,bd] using a fixed number of layers and weights, as long as
the error is measured in Lp, p < ∞.

By combining the two results, one sees that neural networks can well approximate every function
which is locally well approximated by polynomials.
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1.5 Notation

Given a subset A ⊂ X of a “master set” X (which is usually implied by the context), we define the
indicator function of A as

χA : X → {0, 1}, x (→
{
1, if x ∈ A,

0, if x /∈ A.

Moreover, ifX is a topological space, we write ∂A for the boundary of A. We denote by N = {1, 2, . . .} the
set of natural numbers, by N0 = N∪{0} the set of natural numbers including 0, and for k ∈ N we denote
by N≥k all natural numbers larger or equal to k. Occasionally, we also use the notation n := {1, . . . , n}
for n ∈ N. Furthermore, we write ⌊x⌋ = max{k ∈ Z : k ≤ x} and ⌈x⌉ = min{k ∈ Z : k ≥ x} for x ∈ R.

For a function f : X → R, we write

∥f∥sup := ∥f∥L∞ := sup
x∈X

|f(x)| ∈ [0,∞].

For a given norm ∥ · ∥ on Rd, we denote by

B∥·∥
r (x) = Br(x) = {y ∈ R

d : ∥y − x∥ < r} and Br
∥·∥

(x) = Br(x) = {y ∈ R
d : ∥y − x∥ ≤ r}

the open and closed balls around x ∈ Rd of radius r > 0. Similar notations are also used in general
normed vector spaces, not only in Rd.

For a multiindex α ∈ Nd
0, we write |α| := α1 + · · · + αd. This creates a slight ambiguity with the

notation |x| for the euclidean norm of x ∈ Rd, but the context will always make clear which interpretation
is desired.

If X,Y, Z are sets and f : X → Y and g : Y → Z, then we denote by g ◦ f the composition of f and
g, i.e., g ◦ f(x) = g(f(x)) for x ∈ X .

We denote by |M | the cardinality |M | ∈ N0 ∪ {∞} of a set M . For A ∈ Rn×m, we denote by
∥A∥ℓ0 := |{(i, j) : Ai,j ̸= 0}| the number of non-zero entries of A. A similar notation is used for vectors
b ∈ Rn.

2 Neural networks

Below we present a definition of a neural network. For our arguments, it will be crucial to emphasize
the difference between a network and the associated function. Thus, we define a network as a structured
set of weights and its realization as the associated function that results from alternatingly applying the
weights and a fixed activation function, which acts componentwise.

Definition 2.1. Let d, L ∈ N. A neural network Φ with input dimension d and L layers is a sequence
of matrix-vector tuples

Φ = ((A1, b1), (A2, b2), . . . , (AL, bL)),

where N0 = d and N1, . . . , NL ∈ N, and where each Aℓ is an Nℓ ×Nℓ−1 matrix, and bℓ ∈ RNℓ .
If Φ is a neural network as above, and if ϱ : R → R is arbitrary, then we define the associated

realization of Φ with activation function ϱ as the map Rϱ(Φ) : Rd → RNL such that

Rϱ(Φ)(x) = xL,

where xL results from the following scheme:

x0 : = x,

xℓ : = ϱ(Aℓ xℓ−1 + bℓ), for ℓ = 1, . . . , L− 1,

xL : = AL xL−1 + bL,

where ϱ acts componentwise, i.e., ϱ(y) = (ϱ(y1), . . . , ϱ(ym)) for y = (y1, . . . , ym) ∈ Rm.
We call N(Φ) := d +

∑L
j=1 Nj the number of neurons of the network Φ, L = L(Φ) the number of

layers, and finally M(Φ) :=
∑L

j=1(∥Aj∥ℓ0 + ∥bj∥ℓ0) denotes the number of non-zero entries of all Aℓ, bℓ
which we call the number of weights of Φ. Moreover, we refer to NL as the dimension of the output
layer of Φ.

To construct new neural networks from existing ones, we will frequently need to concatenate networks
or put them in parallel. We first define the concatenation of networks.
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Definition 2.2. Let L1, L2 ∈ N and let Φ1 = ((A1
1, b

1
1), . . . , (A

1
L1
, b1L1

)),Φ2 = ((A2
1, b

2
1), . . . , (A

2
L2
, b2L2

))

be two neural networks such that the input layer of Φ1 has the same dimension as the output layer of Φ2.
Then, Φ1!Φ2 denotes the following L1 + L2 − 1 layer network:

Φ1!Φ2 := ((A2
1, b

2
1), . . . , (A

2
L2−1, b

2
L2−1), (A

1
1A

2
L2
, A1

1b
2
L2

+ b11), (A
1
2, b

1
2), . . . , (A

1
L1
, b1L1

)).

We call Φ1!Φ2 the concatenation of Φ1 and Φ2.

One directly verifies that Rϱ(Φ1!Φ2) = Rϱ(Φ1) ◦Rϱ(Φ2), which shows that the definition of concate-
nation is reasonable.

If the activation function ϱ : R → R is the ReLU, i.e., ϱ(x) = max{0, x}, then one can construct a
simple two-layer network whose realization is the identity on Rd.

Lemma 2.3. Let ϱ be the ReLU, let d ∈ N, and define

ΦId := ((A1, b1), (A2, b2))

with

A1 :=

(
IdRd

−IdRd

)
, b1 := 0, A2 :=

(
IdRd −IdRd

)
, b2 := 0.

Then Rϱ(ΦId) = IdRd .

Remark 2.4. In generalization of Lemma 2.3, for each d ∈ N, and each L ∈ N≥2, one can construct a
network ΦId

d,L with L layers and with 2d · L nonzero, {1,−1}-valued weights such that Rϱ(ΦId
d,L) = IdRd .

In fact, one can choose

ΦId
d,L :=

⎛

⎜⎝
((

IdRd

−IdRd

)
, 0

)
, (IdR2d , 0), . . . , (IdR2d , 0)︸ ︷︷ ︸

L−2 times

, ([IdRd |−IdRd ] , 0)

⎞

⎟⎠ .

For L = 1, one can achieve the same bounds, simply by setting ΦId
d,1 := ((IdRd , 0)).

Lemma 2.3 enables us to define an alternative concatenation where one can precisely control the
number of weights of the resulting network. Note though, that this only works for the ReLU rectifier.

Definition 2.5. Let ϱ : R → R be the ReLU, let L1, L2 ∈ N, and let Φ1 = ((A1
1, b

1
1), . . . , (A

1
L1
, b1L1

))
and Φ2 = ((A2

1, b
2
1), . . . , (A

2
L2
, b2L2

)) be two neural networks such that the input layer of Φ1 has the same
dimension d as the output layer of Φ2. Let ΦId be as in Lemma 2.3.

Then, the sparse concatenation of Φ1 and Φ2 is defined as

Φ1 ⊙ Φ2 := Φ1!ΦId!Φ2.

Remark 2.6. It is easy to see that

Φ1⊙ Φ2=

(

(A2
1, b

2
1), . . . , (A

2
L2−1, b

2
L2−1),

((
A2

L2

−A2
L2

)
,

(
b2L2

−b2L2

))

,
([
A1

1

∣∣−A1
1

]
, b11
)
, (A1

2, b
1
2), . . . , (A

1
L1
, b1L1

)

)

has L1 + L2 layers and that Rϱ(Φ1 ⊙ Φ2) = Rϱ(Φ1) ◦Rϱ(Φ2) and M(Φ1 ⊙ Φ2) ≤ 2M(Φ1) + 2M(Φ2).

Using concatenations of ΦId, arbitrarily deep neural networks whose realization is the identity can
be constructed. Finally, one can put two networks in parallel by using the following procedure.

Definition 2.7. Let L ∈ N and let Φ1 = ((A1
1, b

1
1), . . . , (A

1
L, b

1
L)),Φ

2 = ((A2
1, b

2
1), . . . , (A

2
L, b

2
L)) be two

neural networks with L layers and with d-dimensional input. We define

P(Φ1,Φ2) := ((Ã1, b̃1), . . . , (ÃL, b̃L)),

where

Ã1 :=

(
A1

1

A2
1

)
, b̃1 :=

(
b11
b21

)
, and Ãℓ :=

(
A1
ℓ 0

0 A2
ℓ

)
, b̃ℓ :=

(
b1ℓ
b2ℓ

)
for 1 < ℓ ≤ L.

Then P(Φ1,Φ2) is a neural network with d-dimensional input and L layers, called the parallelization of
Φ1 and Φ2.
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One readily verifies that M(P (Φ1,Φ2)) = M(Φ1) +M(Φ2), and

Rϱ(P(Φ
1,Φ2))(x) = (Rϱ(Φ

1)(x),Rϱ(Φ
2)(x)) for all x ∈ R

d. (2.1)

Remark 2.8. With the above definition, parallelization is only defined for networks with the same number
of layers. However, since we will be working with ReLU networks only, Remark 2.4 and Definition 2.5
enable a reasonable definition of the parallelization of two networks Φ1,Φ2 of different sizes L1 < L2:
One first sparsely concatenates Φ1 with a network with L2 − L1 layers whose realization is the identity,
i.e., one defines Φ̃1 := Φ1 ⊙ ΦId

d,L2−L1
. We then define P(Φ1,Φ2) := P(Φ̃1,Φ2). It is not hard to verify

that with this new definition, Equation (2.1) still holds. Of course, a similar construction works for
L1 > L2.

In the sequel, we will be especially interested in neural networks whose weights are quantised since
these networks can be stored on a computer. This notion of quantised weights is made precise in the
following definition:

Definition 2.9. Let ε ∈ (0,∞) and let s ∈ N. A neural network Φ = ((A1, b1), . . . , (AL, bL)) is said to
possess (s, ε)-quantised weights, if all weights (i.e., all entries of A1, . . . , AL and b1, . . . , bL) are elements
of [−ε−s, ε−s] ∩ 2−s⌈log2(1/ε)⌉Z.

Remark 2.10. Assume that ε ∈ (0, 1/2), p ∈ (0,∞), C ≥ 1, s ∈ N. If Φ is a network with (s, εp/C)-
quantised weights, then the weights are also (s̃, ε)-quantised, where s̃ = ⌈ps + s log2(C)⌉ + s. This is
because

ε−s̃ ≥ ε−ps−s log2(C) = ε−ps

(
1

ε

)s log2(C)

≥ ε−ps2s log2(C) = ε−psCs =

(
εp

C

)−s

,

and

s · ⌈log2(1/(εp/C))⌉
s̃ · ⌈log2(1ε )⌉

≤
s(p log2(

1
ε ) + log2(C) + 1)

(ps+ s log2(C) + s) log2(
1
ε )

=
sp log2(

1
ε ) + s log2(C) + s

sp log2(
1
ε ) + s log2(C) log2(

1
ε ) + s log2(

1
ε )

≤ 1.

3 Approximation of classifier functions

In this section, we will provide the main approximation results of the paper. We will only state the
results without the underlying proofs, which would otherwise distract from the essentials. All proofs can
be found in Appendix A. In this entire section, we assume that ϱ : R → R, x (→ max{0, x} is the ReLU.

3.1 Approximation of horizon functions

For β ∈ (0,∞) with β = n+ σ, where n ∈ N0 and σ ∈ (0, 1] and d ∈ N, we define for f ∈ Cn([−1/2, 1/2]d)
the norm

∥f∥C0,β := max

{

max
|α|≤n

∥∂αf∥sup , max
|α|=n

sup
x,y∈[−1/2,1/2]d,x ̸=y

|∂αf(x)− ∂αf(y)|
|x− y|σ

}

∈ [0,∞],

and for B > 0, we define the following class of smooth functions:

Fβ,d,B :=
{
f ∈ Cn

(
[−1/2, 1/2]d

)
: ∥f∥C0,β ≤ B

}
. (3.1)

It should be observed that for β = n + 1, we do not require f ∈ Fβ,d,B to be n+ 1 times continuously
differentiable. Instead, we only require f ∈ Cn, where all derivatives of order n are assumed to be
Lipschitz continuous. Of course, if f ∈ Cn+1([−1/2, 1/2]d) with ∥∂αf∥L∞ ≤ B for all |α| ≤ n+ 1, then it

easily follows that ∂αf is Lipschitz continuous, with Lipschitz constant Lip(∂αf) ≤
√
d ·B for all |α| = n,

so that f ∈ Fn+1,d,
√
dB. In this sense, our assumptions in case of β = n + 1 are slightly weaker than

assuming f ∈ Cn+1.
The following theorem establishes optimal approximation rates by ReLU neural networks for the

function class Fβ,d,B. It is proved in the appendix as Theorem A.8.

Theorem 3.1. For any d ∈ N, and β, B > 0, there exist constants c = c(d,β, B) > 0, s = s(d,β, B) ∈ N,
and c′ > 0, such that for any function f ∈ Fβ,d,B and any ε ∈ (0, 1/2), there is a neural network Φf

ε with
at most c′ · log2(2+ β) · (1+ β/d) layers, and at most c · ε−d/β non-zero, (s, ε)-quantised weights such that
for all p ∈ (0, 2],

∥Rϱ(Φf
ε )− f∥Lp < ε.
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Remark 3.2. Approximation of functions in Fβ,d,B by ReLU networks was already considered in [48,
Theorem 1], which provides a result very similar to Theorem 3.1. It differs mainly in two points: First
of all, the approximation is with respect to the L∞ norm in [48, Theorem 1], whereas we provide an
approximation result in Lp, p ∈ (0, 2]. Additionally, [48, Theorem 1] requires the number of layers of the
network to grow logarithmically in 1/ε, which is not necessary for our result. Overcoming the dependence
of the number of layers on ε is achieved by using a refined construction of a multiplication operator,
which is given in Lemma A.2, and the fact that (approximate) multiplications with indicator functions
can be much more efficiently implemented if only L2 approximation is required, see Lemma A.5.

One of the main function classes of interest in the subsequent analysis is that of horizon functions.
These are {0, 1}-valued functions with a jump along a hypersurface and such that the jump surface is
the graph of a smooth function. Formally, we define the class of horizon functions as follows:

Definition 3.3. Let d ∈ N≥2, and β, B > 0. Furthermore, let H := χ[0,∞)×Rd−1 be the Heaviside
function. We define

HFβ,d,B :=
{
f ◦T ∈L∞

(
[−1/2, 1/2]d

)
: f(x)=H(x1+γ(x2, . . . , xd), x2, . . . , xd), γ∈Fβ,d−1,B, T ∈Π(d,R)

}
,

where Π(d,R) ⊂ GL(d,R) denotes the group of permutation matrices.

Concerning approximation by neural networks of functions in the class HFβ,d,B, we achieve the
following result, which is proved in the appendix as Lemma A.9.

Lemma 3.4. For any β > 0, d ∈ N≥2, and B > 0 there exists an absolute constant c′ > 0, and
constants c = c(d,β, B) > 0, and s = s(d,β, B) ∈ N, such that for every function f ∈ HFβ,d,B and
every ε ∈ (0, 1/2) there is a neural network Φf

ε with at most c′ · log2(2 + β) · (1 + β/d) layers, and at
most c · ε−2(d−1)/β non-zero, (s, ε)-quantised weights, such that ∥Rϱ(Φf

ε )− f∥L2([−1/2,1/2]d) < ε. Moreover,

0 ≤ Rϱ(Φf
ε )(x) ≤ 1 for all x ∈ [−1/2, 1/2]d.

At first, the approximation of horizon functions might seem a bit arbitrary as this is not a function
class of interest that is typically considered. However, this result directly enables the optimal approxima-
tion of piecewise constant and even of piecewise smooth functions, as we will see in the next subsection.

3.2 Approximation of piecewise smooth functions

In this subsection, we present approximation rates for piecewise smooth functions f , depending on the
smoothness of the jump surfaces and on the smoothness of f on each of the ”smooth pieces”. We first
observe that if one is able to approximate indicator functions χK of compact sets K ⊂ [−1/2, 1/2]d with
say ∂K ∈ Cβ , then—up to a constant depending on the number N of “pieces”—one can achieve the
same approximation quality for functions f =

∑
k≤N ck χKk , where ∂Kk ∈ Cβ for all k ≤ N .

Thus, we will only demonstrate how to approximate indicator functions with a condition on the
smoothness of the jump surface. We start by introducing a set of domains with smooth boundaries. Let
r ∈ N, d ∈ N≥2, and β, B > 0. Then we define

Kr,β,d,B :=

{

K⊂
[
−1

2
,
1

2

]d
: ∀ x∈

[
−1

2
,
1

2

]d
∃ fx ∈ HFβ,d,B : χK = fx on

[
−1

2
,
1

2

]d
∩B2−r

∥·∥ℓ∞(x)

}

.

Although the definition of Kr,β,d,B is strongly tailored to our needs, it is not overly restrictive. In fact,
for every closed set K ′ ⊂ [−1/2, 1/2]d such that ∂K ′ is locally the graph of a Cβ function of all but one
coordinate, it follows by compactness of [−1/2, 1/2]d that K ′ ∈ Kr,β,d,B, for sufficiently large r and large
enough B.

We obtain the following approximation result, which is proved in the appendix as Theorem A.10.

Theorem 3.5. For r ∈ N, d ∈ N≥2, and β, B > 0, there are constants c′ > 0, c = c(d, r,β, B) > 0, and
s = s(d, r,β, B) ∈ N, such that for any K ∈ Kr,β,d,B and any ε ∈ (0, 1/2), there is a neural network ΦK

ε

with at most c′ · log2(2+ β) · (1+ β/d) layers, and at most c · ε−2(d−1)/β non-zero, (s, ε)-quantised weights
such that

∥Rϱ(ΦK
ε )− χK∥L2 < ε.

Remark 3.6. Theorem 3.5 establishes approximation rates for piecewise constant functions. It should be
noted that the number of required layers is fixed and only depends on the dimension d and the regularity
parameter β; in particular, it does not depend on the approximation accuracy ε. We will see in Section 4
that the given depth is optimal (up to the factor c′ · log2(2+β)) if one wants to achieve the approximation
rate stated in the theorem.
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A simple extension of Theorem 3.5 allows us to also approximate piecewise smooth functions optimally.
First, let us introduce a suitable class of piecewise smooth functions: For r ∈ N, d ∈ N≥2, and β, B > 0
we define β′ := (dβ)/(2(d − 1)) and

Er,β,d,B := {f = χK · g : g ∈ Fβ′,d,B and K ∈ Kr,β,d,B} .

In terms of this new function class of piecewise smooth functions, we get the following result, which is
proven in the appendix as Corollary A.11.

Corollary 3.7. Let r ∈ N, d ∈ N≥2, and B,β > 0. Then there exist constants c = c(d,β, r, B) > 0,
s = s(d,β, r, B) ∈ N, and c′ > 0, such that for all ε ∈ (0, 1/2) and all f ∈ Er,β,d,B there is a neural network
Φf
ε with at most c′ · log2(2 + β) · (1 + β/d) layers, and at most c · ε−2(d−1)/β non-zero, (s, ε)-quantised

weights, such that
∥Rϱ(Φf

ε )− f∥L2 ≤ ε.

4 Optimality

In this section, we study two notions of optimality: First of all, we establish in the upcoming subsection
a lower bound on the number of weights that neural networks need to have in order to achieve a given
approximation accuracy for the class of horizon functions of regularity β > 0. These results are valid
for arbitrary activation functions ϱ. In the second subsection, we study lower bounds on the number of
layers that a ReLU neural network needs to have in order to achieve a given approximation rate in terms
of the number of weights or neurons. Overall, we will see that the constructions from the previous section
achieve the optimal number of weights and have the optimal number of layers, both up to logarithmic
factors.

4.1 Optimality in terms of numbers of weights

In this subsection, we show that the approximation results from the preceding section are sharp. More
precisely, we show that in order to approximate functions from the class HFβ,d,B of horizon functions up
to an error of ε > 0 (w.r.t. the L2 norm), one generally needs a network with at least Ω(ε−2(d−1)/β) non-
zero weights, independent of the employed activation functions. This claim is still somewhat imprecise;
the precise statements are contained in the theorems below. Here, we mention the following four most
important points that should be observed:

• We have for all d ∈ N≥2, r ∈ N, and β, B > 0 that

HFβ,d,B ⊂ {χK : K ∈ Kr,β,d,B} ⊂ 1

B
· Er,β,d,B.

Thus all lower bounds established for horizon functions also hold for the function classes of piecewise
constant and piecewise smooth functions.

• The statement “one generally needs a network with at least Ω(ε−2(d−1)/β) non-zero weights” sup-
presses a log factor. Actually, we show that one needs a network with at least c·ε−2(d−1)/β

/
log2(1/ε)

non-zero weights, for a suitable constant c = c(d,β, B) > 0.

• In [48, Theorem 4], Yarotsky also derives lower bounds for approximating functions using ReLU
networks, by using known bounds for the VC dimension of such networks. The most obvious
difference of this result to ours is that Yarotsky considers L∞ approximation of smooth functions,
while we consider L2 approximation of piecewise smooth, possibly discontinuous functions. Apart
from these obvious differences, there are also more subtle ones:

Our lower bounds are more general than those in [48] in the sense that they hold for arbitrary
activation functions ϱ : R → R, as long as ϱ(0) = 0, whereas the results of Yarotsky only apply for
piecewise linear activation functions with a finite number of “pieces”.

On the other hand, our results are less general than those in [48], since we impose (as in [6])
a restriction on the complexity of the weights of the network. Put briefly, we assume that each
weight of the networks Φ that we consider can be encoded with at most ⌈C0 · log2(1/ε)⌉ bits, where
ε denotes the allowed approximation error, i.e., ∥f −Rϱ(Φ)∥L2 ≤ ε. This assumption might appear
somewhat restrictive and artificial at first glance, but we believe it to be quite natural, for two
reasons:
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1. The assumption is reasonable if one wants to understand the behavior of networks that are
used in practice. Here, the weights of the network have to be stored in the memory of a
computer and thus have to be of limited complexity. Note that our results, in particular,
apply for the usual floating point numbers, since these only use a fixed number of bits per
weight, independent of ε.

2. As noted above, our results apply for general (arbitrary, but fixed) activation functions. In
this generality, it is impossible to derive nontrivial lower bounds without restricting the size
and complexity of the weights: Indeed, [34, Theorem 4] shows that there exists an activation
function ϱ : R → R that is analytic, strictly increasing, and sigmoidal (i.e., limx→−∞ ϱ(x) = 0
and limx→∞ ϱ(x) = 1) such that for any d ∈ N, any f ∈ C([0, 1]d) and any ε > 0 there
exists a neural network Φ with two hidden layers of dimensions 3d and 6d + 3 such that
∥f − Rϱ(Φ)∥L∞ ≤ ε. Thus, if one uses this (incredibly complex) activation function ϱ, then
one can approximate arbitrary continuous functions to an arbitrary precision, using a constant
number of layers, neurons and weights. From this, it is not too hard to see that a similar result
holds for functions in HFβ,d,B, when the error is measured in L2. Our bounds show that the
weights used in such networks have to be incredibly complex and/or numerically large.

• There are two different settings in which one can derive lower bounds:

1. For optimality in a uniform setting, we are given ε > 0 and want to find the smallest Mε ∈ N

such that for every f ∈ HFβ,d,B there is a neural network Φε,f with at most Mε non-zero
weights (and such that each weight can be encoded with at most ⌈C0 ·log2(1/ε)⌉ bits) satisfying
∥f − Rϱ(Φε,f )∥L2 ≤ ε.

Put differently, for each sufficiently small ε > 0, there is some “hard to approximate” function
fε ∈ HFβ,d,B such that fε cannot be approximated up to error ε with a network using less
than Mε non-zero weights. In Theorem 4.2, we will show Mε ≥ C · ε−2(d−1)/β

/
log2(1/ε) for

some C = C(d,β, B, C0) > 0.

2. In the setting of instance optimality, we consider for each f ∈ HFβ,d,B the minimal number
Mε(f) of non-zero weights (of limited complexity, as above) that a neural network needs to
have in order to approximate this specific function f up to an L2 error of at most ε. Note
Mε = supf∈HFβ,d,B

Mε(f).

Of course, for some f , it can be the case that Mε(f) grows much slower than ε−2(d−1)/β,
for example if the boundary surfaces of f are much smoother than Cβ . Indeed, if e.g. f ∈
HFβ+10,d,B, then Lemma 3.4 shows Mε(f) ! ε−2(d−1)/(β+10) ≪ ε−2(d−1)/β.

Now, note that our lower bounds from the preceding point yield for each ε ∈ (0, 1/2) a function
fε with Mε(fε) ≥ C ·ε−2(d−1)/β

/
log2(1/ε) ≫ ε−γ , for fixed but arbitrary γ < 2(d−1)/β =: γ∗.

Nevertheless, since the choice of the function fε might depend heavily on the choice of ε,
this does not rule out the possibility that we could have Mε(f) ∈ O(ε−γ) as ε ↓ 0 for all
f ∈ HFβ,d,B and some γ < γ∗. But as we will see in Theorem 4.3 and in Corollary 4.4, there
is a single function f ∈ HFβ,d,B such that Mε(f) /∈ O(ε−γ) for all γ < γ∗.

This shows that the exponent γ∗ = 2(d−1)/β from Theorem 3.5 is the best possible, not only
in a uniform sense, but even for a single (judiciously chosen) function f ∈ HFβ,d,B.

After this overview of our optimality results, we state the precise theorems; for the sake of clarity, we
deferred the proofs to Appendix B. The first order of business is to make precise the assumption that
“the weights of a network can be encoded with K bits”.

Definition 4.1. A coding scheme for real numbers is a sequence B = (Bℓ)ℓ∈N of maps Bℓ : {0, 1}ℓ → R.
We say that the coding scheme is consistent if “each number that can be represented with ℓ bits can

also be represented with ℓ+ 1 bits“, i.e., if Range(Bℓ) ⊂ Range(Bℓ+1) for all ℓ ∈ N.
Given a (not necessarily consistent) coding scheme for real numbers B = (Bℓ)ℓ∈N, and integers

M,K ∈ N, we denote by NNB
M,K,d the class of all neural networks Φ with d-dimensional input and

one-dimensional output, with at most M non-zero weights and such that the value of each nonzero weight
of Φ is contained in Range(BK). In words, NNB

M,K,d is the class of all neural networks with at most
M non-zero weights, each of which can be encoded with K bits, using the coding scheme B. If the coding
scheme is implied by the context, we simply write NNM,K,d instead of NNB

M,K,d.

Now, given a fixed activation function ϱ : R → R and a fixed coding scheme of real numbers B, it
makes sense to ask for a given function f ∈ L2([−1/2, 1/2]d) how quickly the minimal error ∥f −Rϱ(Φ)∥L2
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(with Φ ∈ NNM,K,d) decays, as M,K → ∞. More precisely, given a fixed C0 > 0, we are interested in
the behavior of

Mε(f) := MB,ϱ,C0
ε (f) := inf

{
M ∈ N : ∃ Φ ∈ NNB

M,⌈C0·log2(1/ε)⌉,d : ∥f − Rϱ(Φ)∥L2 ≤ ε
}
, (4.1)

as ε ↓ 0. In words, Mε(f) describes the minimal number of non-zero weights that a neural network (with
activation function ϱ and with weights that can be encoded with ⌈C0 · log2(1/ε)⌉ bits using the coding
scheme B) needs to have in order to approximate f up to an L2-error of at most ε. Of course, for a
badly chosen activation function (e.g., for ϱ ≡ 0), it might happen that the set over which the infimum
is taken in Equation (4.1) is empty; in this case, Mε(f) := ∞.

The quantity Mε(f) describes how well a single function f can be approximated. In contrast, for
optimality in a uniform setting, we are given a whole function class C ⊂ L2([−1/2, 1/2]d), and we are
interested in the behavior of

Mε(C) := MB,ϱ,C0
ε (C) := sup

f∈C
MB,ϱ,C0
ε (f)

as ε ↓ 0. Note that Mε(C) ≤ M if and only if every function f ∈ C can be approximated with a neural
network Φf,ε ∈ NNB

M,⌈C0·log2(1/ε)⌉,d up to an L2 error of ε.
The following theorem establishes a lower bound on Mε(HFβ,d,B). This lower bound shows that the

size of the networks that are constructed in Theorem 3.5 and Corollary 3.7 is optimal, up to a logarithmic
factor in 1/ε.

Theorem 4.2. Let d ∈ N≥2 and β, B, C0 > 0. Then there exist constants C = C(d,β, B, C0) > 0 and
ε0 = ε0(d,β, B) > 0, such that for each encoding scheme of real numbers B and any activation function
ϱ : R → R with ϱ(0) = 0, we have

MB,ϱ,C0
ε (HFβ,d,B) ≥ C · ε−2(d−1)/β

/
log2(1/ε) for all ε ∈ (0, ε0).

The preceding theorem establishes a lower bound in the uniform setting that was discussed at the
beginning of this section. In general, given such a lower bound for the uniform error, it is not clear that
there is also a specific single function f ∈ HFβ,d,B for which Mε(f) " ε−2(d−1)/β (up to log factors). As
the following theorem—our main optimality result—shows, this turns out to be true.

Theorem 4.3. Let d ∈ N≥2, and β, B, C0 > 0. Let ϱ : R → R be arbitrary with ϱ(0) = 0, and let B be a
consistent encoding scheme of real numbers. Then there is some f ∈ HFβ,d,B (potentially depending on
ϱ, d,B,β, B, C0) and a null-sequence (εk)k∈N in (0, 1/2) satisfying

MB,ϱ,C0
εk (f) ≥ ε−2(d−1)/β

k

log2(1/εk) · log2(log2(1/εk))
for all k ∈ N.

Although it is a trivial consequence of Theorem 4.3, we note the following corollary which shows that
the networks constructed in Theorem 3.5 and Corollary 3.7 are of (almost) optimal complexity, even if
one is only interested in approximating a single (judiciously chosen) horizon function f ∈ HFβ,d,B.

Corollary 4.4. The function f ∈ HFβ,d,B from Theorem 4.3 satisfies Mε(f) /∈ O(ε−γ) as ε ↓ 0, for
every γ < 2(d− 1)/β.

Remark. Thus, the rate obtained in Theorem 3.5 is (almost) optimal in the sense that there is one fixed
(but unknown) horizon function f ∈ HFβ,d,B such that as ε ↓ 0, one cannot achieve ∥f −Rϱ(Φε)∥L2 ≤ ε
with a network Φε that has only O(ε−γ) non-zero weights, for some γ < 2(d−1)/β, at least if one insists
that the weights of Φε can be encoded with at most ⌈C0 · log2(1/ε)⌉ bits.

4.2 We have to go deeper: optimal number of layers

We now establish a lower bound on the number of layers L(Φε) that a family of ReLU neural network
(Φε)ε>0 needs to have to achieve a given approximation rate for approximating smooth functions. In this
whole subsection, we again assume that the activation function ϱ is the ReLU, i.e., ϱ(x) = max{0, x} =
x+.

The following theorem is proven in the appendix as Theorem C.6.
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Theorem 4.5. Let Ω ⊂ Rd be nonempty, open, bounded, and connected. Furthermore, let f ∈ C3 (Ω)
be nonlinear. Then there is a constant Cf > 0 satisfying

∥f −Rϱ (Φ)∥Lp ≥ Cf · (N (Φ)− 1)−L(Φ)·(2+ 1
p ) ,

∥f −Rϱ (Φ)∥Lp ≥ Cf · (M (Φ) + d)−L(Φ)·(2+ 1
p )

for all 1 ≤ p < ∞ and each ReLU neural network Φ with input dimension d and output dimension 1.

Remark 4.6. The theorem (and also its proof) is inspired by [48, Theorem 6], where it is shown that
if f ∈ C2 ([0, 1]d) is nonlinear and L ∈ N is fixed, and if ∥f −Rϱ (Φ)∥L∞([0,1]d) ≤ ε with ε ∈ (0, 1) for

a neural network Φ with L (Φ) = L ≥ 2, then min {M (Φ) , N (Φ)} ≥ c · ε−1/(2(L−1)) with c = c (f, L).
Note that Yarotsky uses a slightly different definition of neural networks, but the given formulation of his
result is already adapted to our definition of neural networks.

The main difference is that Yarotsky considers approximation in L∞, while we consider approximation
in Lp for 1 ≤ p < ∞, where it is harder to reduce the d-dimensional case to the one-dimensional case,
as seen in the proof of Proposition C.5.

Furthermore, there is a difference in the sharpness of the results: As we saw in Section 3, to approxi-
mate a function f ∈ Fβ,d,B of regularity Cβ up to error ε in the Lp norm, one can take a neural network
Φ with O

(
ε−d/β

)
non-zero weights and a given fixed depth L ≤ c′ log2(2 + β)(1 + d/β) for an absolute

constant c′ > 0. In this sense, up to a logarithmic multiplicative factor, our constructed networks have
an optimal depth.

In contrast, the networks Φ constructed in [48, Theorem 1] to approximate a given function f ∈ Fn,d,1

up to error ε in the L∞ norm with O
(
ε−d/n · log2 (1/ε)

)
non-zero weights and neurons have a depth of

Θ (log2 (1/ε)), i.e., the depth grows with increasing accuracy of the approximation.
Finally, note that it is necessary to assume a certain regularity of f to get the result, since there are

nonlinear functions (like the ReLU ϱ) which can be approximated arbitrarily well using ReLU networks
with a fixed number of weights, neurons and layers.

The following corollary states the connection between the number of weights or neurons and the
number of layers more directly. It is proven in the appendix as Corollary C.7.

Corollary 4.7. Let Ω ⊂ Rd be nonempty, open, bounded, and connected. Furthermore, let f ∈ C3 (Ω)
be nonlinear. If there are constants C, θ > 0, a null-sequence (εk)k∈N

of positive numbers, and a sequence
(Φk)k∈N

of ReLU neural networks satisfying

∥f −Rϱ (Φk)∥Lp ≤ C · εk and
[
M (Φk) ≤ C · ε−θk or N (Φk) ≤ C · ε−θk

]

for all k ∈ N and some 1 ≤ p < ∞, then

lim inf
k→∞

L (Φk) ≥
p

2p+ 1
· 1
θ
.

Remark 4.8. The corollary demonstrates that a specific approximation rate in terms of numbers of
neurons or weights cannot be achieved if the depth of the network is too small. In fact, suppose we are
given f ∈ Er,β,d,B where r ∈ N, d ∈ N≥2, β, B > 0 and such that f is non-linear and C3 when restricted
to an open, connected set A ⊂ [−1/2, 1/2]d, and let (εk)k∈N be a null-sequence of positive numbers. Then
we conclude by Corollary 3.7 that there is a sequence of neural networks Φk such that

∥f −Rϱ(Φk)∥L2 ≤ εk and M(Φk) ≤ C · ε−
2(d−1)

β

k .

for all k ∈ N. Consequently, Corollary 4.7 applied to f restricted to A demonstrates that there is a
lower bound on the number of layers of the constructed networks given—up to a multiplicative factor—by
β/(2(d−1)). We observe that the neural networks constructed in Corollary 3.7 have the optimal numbers
of layers, up to a multiplicative factor which is logarithmic in β.

A Approximation of piecewise smooth functions

In this section, we prove all results stated in Section 3, as well as a couple of auxiliary lemmas.
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A.1 Approximation of the Heaviside function

As a first step towards approximating horizon functions, it is necessary to recreate a sharp jump. To this
end, we show that the Heaviside function can be approximately created with a network of fixed size.

Lemma A.1. Let d ∈ N≥2 and H := χ[0,∞)×Rd−1 . For every ε > 0 there exists a neural network ΦH
ε ,

with two layers, and five (non-zero) weights which only take values in {ε−2, 1,−1}, such that

∥H − Rϱ(Φ
H
ε )∥L2([− 1

2 ,
1
2 ]

d) ≤ ε.

Moreover, |H(x)− Rϱ(ΦH
ε )(x)| ≤ χ0≤x1≤ε2(x) for all x = (x1, . . . , xd) ∈ Rd. Finally, 0 ≤ Rϱ(ΦH

ε ) ≤ 1.

Proof. Let ΦH
ε := ((A1, b1), (A2, b2)) with

A1 :=

(
ε−2 0 0 . . .
ε−2 0 0 . . .

)
∈ R

2×d, b1 :=

(
0

−1

)
∈ R

2,

A2 :=
(
1 −1

)
∈ R

1×2, b2 := 0 ∈ R
1.

Then

Rϱ(Φ
H
ε )(x) = ϱ

(x1

ε2

)
− ϱ

(x1

ε2
− 1
)

for x = (x1, . . . , xd) ∈ R
d.

From this, we directly compute

Rϱ(Φ
H
ε )(x) = 0 for x1 < 0, Rϱ(Φ

H
ε )(x) =

x1

ε2
for 0 ≤ x1 ≤ ε2, and Rϱ(Φ

H
ε )(x) = 1 for ε2 > x1.

We conclude that indeed |H(x)−Rϱ(ΦH
ε )(x)| ≤ χ0≤x1≤ε2(x) and 0 ≤ Rϱ(ΦH

ε ) ≤ 1, and therefore

∥H − Rϱ(Φ
H
ε )∥2L2([− 1

2 ,
1
2 ]

d) ≤
∫

[0,ε2]×[− 1
2 ,

1
2 ]

d−1

1 dx = ε2.

A.2 Approximation of smooth functions

The second cornerstone of our approximation results is the approximation of smooth functions. The
argument proceeds as follows: We start by demonstrating the possibility of approximating a multiplica-
tion operator (Lemma A.2) with a ReLU network. With such an operator in place, one can construct
networks realizing approximate monomials (Lemma A.3). From there on it is quite clear that for a given
function f one is also able to approximate Taylor polynomials at various root points (Lemma A.4). In
combination with an approximate partition of unity (Lemmas A.5 and A.6), one can thus approximate
Cβ functions (Theorem A.8).

We start by constructing the approximate multiplication operator. Already in [48, Proposition 3], it
was shown that ReLU networks can compute an approximate multiplication map with error at most ε,
using log2(1/ε) layers and nodes. In particular, the number of layers of the network grows indefinitely
as ε ↓ 0. The following lemma offers a compromise between the number of layers and the growth of the
number of weights, thereby allowing a construction with a fixed number of layers.

Lemma A.2. Let θ > 0 be arbitrary. Then, for every L ∈ N with L > 1/θ and each M ≥ 1, there are
constants c = c(L,M, θ) ∈ N, s = s(M) ∈ N, and an absolute constant c′ ∈ N with the following property:

For each ε ∈ (0, 1/2), there is a neural network ×̃ with at most c′ ·L layers, and with at most c·ε−θ non-
zero, (s, ε)-quantised weights, and such that ×̃ satisfies the following properties, for all x, y ∈ [−M,M ]:

• We have |xy − Rϱ(×̃)(x, y)| ≤ ε.

• We have Rϱ(×̃)(x, y) = 0 if x · y = 0.

Proof. Our proof is heavily based on that of [48, Propositions 2 and 3]. As in that paper, let

g : [0, 1] → [0, 1], x (→
{
2x, if x < 1

2 ,

2(1− x), if x ≥ 1
2 ,

and for t ∈ N, let gt := g ◦ · · · ◦ g︸ ︷︷ ︸
t times

be the t-fold composition of g. In the proof of [48, Proposition 2], it

was shown that

gt(x) =

{
2t ·
(
x− 2k

2t

)
, if x ∈

[
2k
2t ,

2k+1
2t

]
, k ∈ {0, 1, . . . , 2t−1 − 1},

−2t ·
(
x− 2k

2t

)
, if x ∈

[
2k−1
2t , 2k

2t

]
, k ∈ {1, . . . , 2t−1},
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so that each function gt is continuous and piecewise affine-linear with 2t “pieces”. From this, it is not
hard to see that

gt(x) = 2t ·

⎛

⎝ϱ(x) +
2t−1−1∑

k=1

2 · ϱ
(
x− 2k

2t

)
−

2t−1∑

ℓ=1

2 · ϱ
(
x− 2ℓ− 1

2t

)⎞

⎠ .

Therefore, for each t ∈ N, there is a neural network Φt with one-dimensional input and output, with two
layers, and 1 + (2t−1 + 2t−1) + 1 ≤ 4 · 2t neurons and at most 2 · 2t−1 + 2 · 2t−1 + 2t−1 + 2t−1 ≤ 4 · 2t
non-zero weights, such that gt = Rϱ(Φt). Furthermore, all weights of Φt can be chosen to be elements of
[−2t+1, 2t+1] ∩ 2−tZ ⊂ [−2m+1, 2m+1] ∩ 2−mZ for 1 ≤ t ≤ m. Setting g0 := id, it is easy to see that the
same remains true for t = 0, cf. Lemma 2.3.

Next, set s0 := 1 + ⌈log2 M⌉ ∈ N and define M0 := 2s0 , so that 2M ≤ M0 ≤ 4M . Furthermore,
choose m := s0 + ⌈log2(1/ε)/2⌉ ∈ N, and set N := ⌈m/L⌉ ∈ N. Now, for each 1 ≤ t ≤ m, we can
write t = kN + r for certain k ∈ N0 and r ∈ {0, . . . , N − 1}. Note k = (t − r)/N ≤ t/N ≤ m/N ≤ L,

and observe gt = gN ◦ · · · ◦ gN︸ ︷︷ ︸
k times

◦gr, so that we get gt = Rϱ(Φ
(t)
0 ), where Φ(t)

0 := ΦN ⊙ · · ·⊙ ΦN︸ ︷︷ ︸
k times

⊙Φr is a

neural network with 2(k + 1) ≤ 2(L+ 1) < 5 · L layers. Therefore, with the networks ΦId
1,λ from Remark

2.4, the network Φ(t) := ΦId
1,5L−2(k+1) ⊙Φ(t)

0 satisfies Rϱ(Φ(t)) = gt, and Φ(t) has precisely 5L layers, and

at most 2k+2 ·(k ·4·2N+4·2N+2·5·L) ≤ c1 ·2N nonzero weights, all of which lie in [−2m+1, 2m+1]∩2−mZ.
Here, c1 = c1(L) > 0 is a suitable constant, and we used that k ≤ L and that each network Φt with
0 ≤ t ≤ N ≤ m has at most 4 · 2t ≤ 4 · 2N nonzero weights which all lie in [−2m+1, 2m+1] ∩ 2−mZ.

We now use the functions gt to construct an approximation to the square function. Precisely, in the
proof of [48, Proposition 2], it is shown that

fm : [0, 1] → [0, 1], x (→ x−
m∑

t=1

gt(x)

22t

satisfies ∥(x (→ x2) − fm∥L∞ ≤ 2−2−2m. Now, set Ψ := P (ΦId
1,5L, P (Φ(1), P (. . . , P (Φ(m−1),Φ(m)) . . . ))),

and Φsum := ((Asum, 0)) with Asum := (1,−2−2,−2−2·2, . . . ,−2−2m) ∈ R1×(m+1). Then, the neural
network Φ0 := Φsum ⊙ Ψ satisfies Rϱ(Φ0) = fm, and Φ0 has 5L + 1 ≤ 6L layers, and not more than
2(m · c2 · 2N + 10L) + 2(m + 1) ≤ c2 ·m · 2N nonzero weights, which all lie in [−2m+1, 2m+1] ∩ 2−2mZ.
Here, c2 = c2(L) > 0.

As in the proof of [48, Proposition 3], we now use the polarization identity x ·y = 1
2 ((x+y)2−x2−y2)

and the approximation fm of the square function to obtain an approximate multiplication. Precisely,
define

h : [−M0,M0]
2 → R, (x, y) (→ M2

0

2
·
[
fm

(
|x+ y|
M0

)
− fm

(
|x|
M0

)
− fm

(
|y|
M0

)]
.

Because of |x| = ϱ(x) + ϱ(−x), and given our implementation of fm = Rϱ(Φ0), it is easy to see that
h = Rϱ(×̃) for a neural network ×̃ with at most 10 ·L layers, and at most c3 ·m ·2N nonzero weights, all of
which are in [−22m+2s0 , 22m+2s0 ] ∩ 2−2m−s0Z for some constant c3 = c3(L) ∈ N. Next, since fm(0) = 0,
we easily get Rϱ(×̃)(x, y) = h(x, y) = 0 if x · y = 0 and x, y ∈ [−M,M ] ⊂ [−M0,M0].

Finally, for x, y ∈ [−M,M ], we have |x+ y| ≤ |x|+ |y| ≤ 2M ≤ M0, and hence

|h(x, y)− xy| =
∣∣∣∣h(x, y)−M2

0 · x

M0
· y

M0

∣∣∣∣

(polarization) = M2
0

∣∣∣∣∣
1

2

[
fm

(
|x+ y|
M0

)
−fm

(
|x|
M0

)
−fm

(
|y|
M0

)]
− 1

2

[(
x

M0
+

y

M0

)2

−
(

x

M0

)2

−
(

y

M0

)2
]∣∣∣∣∣

(since z2=|z|2) ≤ M2
0

2

(∣∣∣∣∣fm
(
|x+ y|
M0

)
−
(
|x+ y|
M0

)2
∣∣∣∣∣+

∣∣∣∣∣fm
(
|x|
M0

)
−
(
|x|
M0

)2
∣∣∣∣∣+

∣∣∣∣∣fm
(

|y|
M0

)
−
(

|y|
M0

)2
∣∣∣∣∣

)

≤ M2
0

2
· (2−2−2m + 2−2−2m + 2−2−2m) ≤

(
M0

2m

)2

≤ ε.

Here, the last step used that by choice of m, we have 2m ≥ 2s0 · 2log2(1/ε)/2 ≥ M0 · ε−1/2. Thus, all
that remains to prove is that ×̃ has the required number of layers and non-zero weights, and that these
weights are (s, ε)-quantised for some s = s(M) ∈ N.
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To this end, first recall from above that ×̃ has at most 10 · L layers. Next, we saw above that all
weights of ×̃ lie in [−22m+2s0 , 22m+2s0 ]∩ 2−2m−s0Z, where m = s0 + ⌈log2(1/ε)/2⌉ ≤ 1+ s0+ 1/2 log2(1/ε).
Because of 0 < ε < 1/2, this implies 22m+2s0 ≤ 22+4s0+log2(1/ε) = 22+4s0 · ε−1 ≤ ε−s for s := 3 + 4s0.
Note that indeed s = s(M) ∈ N, since s0 = s0(M). Next, we observe log2(1/ε) ≥ 1, which implies
2m+ s0 ≤ 3s0 +2+ log2(1/ε) ≤ (4s0 +3) · log2(1/ε) ≤ s⌈log2(1/ε)⌉, and hence 2−2m−s0Z ⊂ 2−s⌈log2(1/ε)⌉Z.

Finally, we note that the number M(×̃) of non-zero weights of the network ×̃ satisfies

M(×̃) ≤ c3 ·m · 2N = c3 ·
(
s0 +

⌈
log2(1/ε)

2

⌉)
· 2⌈m/L⌉

≤ 4c3 · (1 + s0) · log2(1/ε) · 2m/L ≤ 8c3 · (1 + s0)2
s0 · log2(1/ε) · 2log2(1/ε)/(2L)

= 8c3 · (1 + s0)2
s0 · log2(1/ε) · ε−1/(2L) ≤ cL,M,θ · ε−θ.

Here, the last step used that s0 = s0(M) and that 1/(2L) < L−1 < θ, so that log2(1/ε) · ε−1/(2L) ≤
CL,θ · ε−θ, for a suitable constant CL,θ > 0 and all ε ∈ (0, 1/2).

We will be especially interested in the following consequence of Lemma A.2, which demonstrates that
monomials can be (approximately) reproduced by neural networks with a fixed number of layers.

Lemma A.3. Let n, d, ℓ ∈ N be arbitrary. Then, there is an absolute constant c′ ∈ N and there are
constants s = s(n) ∈ N, c = c(d, n, ℓ) ∈ N, and L = L(d, n, ℓ) ∈ N such that L ≤ c′ ·(1+⌈log2 n⌉) ·(1+ ℓ/d)
with the following property:

For each ε ∈ (0, 1/2) and α ∈ Nd
0 with |α| ≤ n, there is a neural network Φαε with d-dimensional input

and one-dimensional output, with at most L layers, and with at most c · ε−d/ℓ non-zero, (s, ε)-quantised
weights, and such that Φαε satisfies

|Rϱ(Φαε )(x)− xα| ≤ ε for all x ∈
[
−1

2
,
1

2

]d
. (A.1)

Proof. Let d ∈ N be fixed, and let c′ ∈ N and s = s(2) ∈ N denote the absolute constants from Lemma
A.2 for the choice M = 2. We prove the claim by induction over n ∈ N.

For n = 1, we either have α = 0, so that xα = 1 = Rϱ(Φαε )(x) for a 1-layer network Φαε that has only
one non-zero weight, or there exists j ∈ {1, . . . , d} such that xα = xj for all x in [−1/2, 1/2]d. But also in
this case, there is a one-layer, one-weight network Φαε with Φαε (x) = xj = xα for all x ∈ Rd, so that the
claim holds.

Now, let us assume that the claim holds for all 1 ≤ n < k, for some k ∈ N≥2. We want to show that the
claim also holds for n = k. First, in case of |α| < k, it is easy to see that the claim follows from the one for
the case n = |α| < k. Therefore, we can assume |α| = k. Now, pick α(1),α(2) ∈ Nd

0 with |α(2)| = 2⌈log2 k⌉−1

such that α(1) + α(2) = α. Note that indeed 2⌈log2 k⌉−1 ∈ N with 2⌈log2 k⌉−1 < k = |α|, so that such a
choice of α(1),α(2) is possible. Next, observe |α(1)| ≤ |α(2)| < k, and log2 |α(2)| = ⌈log2 k⌉ − 1.

Thus, by applying the inductive claim with n = |α(2)|, we conclude that there are s1 = s1(k) ∈ N,
c1 = c1(d, k, ℓ) ∈ N, and L0 ≤ c′(1 + ⌈log2 k⌉ − 1)(1 + ℓ/d) such that for all ε ∈ (0, 1/2) there exist two
neural networks Φ1

ε,Φ
2
ε satisfying

|Rϱ(Φ1
ε)(x) − xα

(1)

| ≤ ε

6
and |Rϱ(Φ2

ε)(x) − xα
(2)

| ≤ ε

6
for all x ∈

[
−1

2
,
1

2

]d

and Φ1
ε,Φ

2
ε both have at most L0 layers, and at most c1 ·ε−d/ℓ non-zero, (s1, ε/6)-quantised weights. Note

by Remark 2.10 that the weights of Φ1
ε and Φ2

ε are also (s2, ε)-quantised for a suitable s2 = s2(k) ∈ N.
Next, by possibly replacing Φt

ε by ΦId
1,λt

⊙ Φt
ε with ΦId

1,λt
as in Remark 2.4 and for λt = L0 − L(Φt

ε),

we can assume that both Φ1
ε,Φ

2
ε have exactly L0 layers. Note in view of Remark 2.6 and because of

L0 = L0(d, k, ℓ) that this will not change the quantisation of the weights, and that the number of weights
of Φt

ε is still bounded by c′1 · ε−d/ℓ for a suitable c′1 = c′1(d, k, ℓ). For simplicity, we will write c1 instead
of c′1 in what follows.

Now, let ×̃ be the network of Lemma A.2 with accuracy δ := ε/6 and with M = 2, and θ = d/ℓ. Note
1/θ = ℓ/d, so that we can choose L = 1 + ⌊ℓ/d⌋ in Lemma A.2. Thus, ×̃ can be chosen to have at most
c2 · ε−d/ℓ non-zero, (s, δ)-quantised weights and c′ · (1 + ⌊ℓ/d⌋) layers, with c′, s as chosen at the start of
the proof, and for a suitable constant c2 = c2(d, ℓ). Again by Remark 2.10 we have that the weights of
×̃ are also (s3, ε)-quantised for a suitable s3 = s3(k) ∈ N.

We now define
Φαε := ×̃ ⊙ P (Φ1

ε,Φ
2
ε).
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By construction, Φαε has not more than

c′ ·
(
1 +

⌊
ℓ

d

⌋)
+ L0 ≤ c′ + c′ · ℓ

d
+ c′ · ⌈log2 k⌉ ·

(
1 +

ℓ

d

)
≤ c′ · (1 + ⌈log2 k⌉)

(
1 +

ℓ

d

)

many layers, as desired. Next, we estimate by the triangle inequality

|Rϱ(Φαε )(x) − xα|
≤ |Rϱ(×̃)(Rϱ(Φ

1
ε)(x),Rϱ(Φ

2
ε)(x)) − Rϱ(Φ

1
ε)(x)Rϱ(Φ

2
ε)(x)| + |Rϱ(Φ1

ε)(x)Rϱ(Φ
2
ε)(x) − xα|

≤ ε

6
+ |Rϱ(Φ1

ε)(x)Rϱ(Φ
2
ε)(x) − Rϱ(Φ

1
ε)(x)x

α(2)

|+ |Rϱ(Φ1
ε)(x)x

α(2)

− xα|

≤ ε

6
+ |Rϱ(Φ1

ε)(x)| ·
ε

6
+ |xα

(2)

| · ε
6
≤ ε,

where the last three steps are justified since x ∈ [−1/2, 1/2]d and |Rϱ(Φℓε)(x)| ≤ 1 + ε/6 < 2 for ℓ ∈ {1, 2}.
Finally, it is easy to see from Remark 2.6 that there exist c3 = c3(d, k, ℓ) > 0 and s4 = s4(k) ∈ N such
that Φαε has not more than c3 · ε−d/ℓ non-zero, (s4, ε)-quantised weights. This concludes the proof.

A consequence of the ability to reproduce monomials is that we can construct networks that can
reproduce polynomials up to a given degree. Moreover, this can be achieved with a fixed and controlled
number of layers.

Lemma A.4. Let d,m ∈ N, let B,β > 0, let {cℓ,α : ℓ = 1, . . . ,m,α ∈ Nd
0, |α| < β} ⊂ [−B,B] be a

sequence of coefficients, and let (xℓ)mℓ=1 ⊂ [−1/2, 1/2]d be a sequence of base points.
Then, there exist constants c = c(d,β, B) > 0, c′ ∈ N, s = s(d,β, B) ∈ N, and L = L(d,β) ∈ N with

L ≤ c′ ·(1+⌈log2(1+β)⌉) ·(1+β/d), such that for all ε ∈ (0, 1/2) there is a neural network Φp
ε with at most

c · (ε−d/β +m) many non-zero, (s, ε)-quantised weights, at most L layers, and with an m-dimensional
output such that

∣∣∣[Rϱ(Φp
ε )]ℓ(x)−

∑

|α|<β

cℓ,α · (x− xℓ)
α
∣∣∣ < ε for all ℓ = 1, . . . ,m and x ∈

[
−1

2
,
1

2

]d
. (A.2)

Proof. Write β = n+ σ, with n ∈ N0 and σ ∈ (0, 1], let {cℓ,α : ℓ = 1, . . . ,m,α ∈ Nd
0, |α| < β} ⊂ [−B,B]

and (xℓ)mℓ=1 be as in the statement of this lemma, and let ε ∈ (0, 1/2). By the d-dimensional binomial
theorem (cf. [19, Chapter 8, Exercise 2]), we have

(x− xℓ)
α =

∑

γ≤α

(
α

γ

)
(−xℓ)

α−γxγ for all x ∈ R
d and α ∈ N

d
0.

Note that |α| < β is equivalent to |α| ≤ n. Thus we have for all x ∈ Rd that

∑

|α|≤n

cℓ,α(x− xℓ)
α =

∑

|α|≤n

cℓ,α
∑

γ≤α

(
α

γ

)
xγ(−xℓ)

α−γ =
∑

|γ|≤n

⎡

⎣ xγ
∑

|α|≤n
α≥γ

cℓ,α

(
α

γ

)
(−xℓ)

α−γ

︸ ︷︷ ︸
=:c̃ℓ,γ

⎤

⎦ .

It is easy to see that there is a constant C = C(d,β, B) ≥ 1 such that for all ℓ ∈ {1, . . . ,m} and γ ∈ Nd
0

with |γ| ≤ n, we have |c̃ℓ,γ | ≤ C. Furthermore, we just saw that
∑

|α|≤n

cℓ,α(x− xℓ)
α =

∑

|γ|≤n

c̃ℓ,γ x
γ for all x ∈ R

d.

Since ε ∈ (0, 1/2), so that ε−s > 2s for s ∈ N, there clearly exists some s1 = s1(d,β, B) ∈ N (indep. of
ε) such that there are ˜̃cℓ,γ,ε ∈ [−ε−s1 , ε−s1 ] ∩ 2−s1⌈log2(1/ε)⌉Z with |c̃ℓ,γ − ˜̃cℓ,γ,ε| ≤ 1 for all γ ∈ Nd

0 with
|γ| ≤ n and all 1 ≤ ℓ ≤ m, and such that

∣∣∣∣∣∣

∑

|γ|≤n

c̃ℓ,γ x
γ −

∑

|γ|≤n

˜̃cℓ,γ,ε x
γ

∣∣∣∣∣∣
≤ ε

2
for all x ∈ [−1/2, 1/2]d .

Write {γ ∈ Nd
0 : |γ| ≤ n} = {γ1, . . . , γN} with distinct γi, for some N = N(d, n) = N(d,β) ∈ N.

With this choice, we define for ℓ ∈ {1, . . . ,m} the network Φℓ,ε := ((Aℓ,ε, bℓ)) where

Aℓ,ε := (˜̃cℓ,γ1,ε, . . . , ˜̃cℓ,γN ,ε) ∈ R
1×N , and bℓ := 0 ∈ R

1.
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An application of Lemma A.3 (with ℓ = n + 1 ∈ N and with n + 1 ∈ N instead of n) shows for
arbitrary δ ∈ (0, 1/2) and γ ∈ Nd

0 with |γ| ≤ n + 1 that there exists a network Φγδ with d-dimensional
input and one-dimensional output, at most c1δ−d/(n+1) non-zero, (s2, δ)-quantised weights and at most
L1 layers, where c1 = c1(d, n) = c1(d,β) > 0, s2 = s2(n) = s2(β) ∈ N, and L1 = L1(d, n) = L1(d,β) ∈ N

are constants such that L1 ≤ c′ · (1 + ⌈log2(n+ 1)⌉) · (1 + (n+1)/d) for an absolute constant c′ ∈ N, and

|Rϱ(Φγδ )(x) − xγ | ≤ δ for all x ∈ [−1/2, 1/2]d .

We now choose δ := ε/(4CN) and define

Φa
ε := P (Φ1,ε, P (Φ2,ε, . . . , P (Φm−1,ε,Φm,ε))) and Φb

ε := P (Φγ1δ , P (Φγ2δ , . . . , P (ΦγN−1

δ ,ΦγNδ ))).

Finally, we set
Φp
ε := Φa

ε ⊙ Φb
ε.

By construction, we have that (A.2) holds. Moreover, the weights were chosen quantised (see also
Remark 2.10 and note δ ≥ ε/C2 for a constant C2 = C2(d,β, B) > 0), and the number of weights of Φa

ε

satisfies M(Φa
ε) ≤ mN , while the number of weights of Φb

ε—up to a multiplicative constant depending
on n = n(β), d and B—is bounded by ε−d/(n+1) ≤ ε−d/β.

Additionally, since Φa
ε has one layer and Φb

ε has at most L1 ≤ c′ · (1 + ⌈log2(n + 1)⌉) · (1 + (n+1)/d)
layers, we conclude that Φp

ε has at most (1 + c′) · (1 + ⌈log2(n+ 1)⌉) · (1 + (n+1)/d) layers. Clearly, since
1 ≤ n+ 1 ≤ β + 1 there is an absolute constant c′′ ∈ N such that

(1 + c′) · (1 + ⌈log2(n+ 1)⌉) ·
(
1 +

(n+ 1)

d

)
≤ c′′ · (1 + ⌈log2(β + 1)⌉) ·

(
1 +

β

d

)
.

This completes the proof.

The next step of our construction is to demonstrate how to construct a network that (approximately)
performs a restriction of an input to an interval.

Lemma A.5. Let d ∈ N and B ≥ 1, and let −1/2 ≤ ai ≤ bi ≤ 1/2 for i = 1, . . . , d, and let ε ∈ (0, 1/2)
be arbitrary. Then there exist constants c = c(d) > 0, s = s(d,B) ∈ N, and a neural network Λε with at
most four layers, and at most c non-zero, (s, ε)-quantised weights such that for each neural network Φ
with one-dimensional output layer and d-dimensional input layer, and with ∥Rϱ(Φ)∥L∞([−1/2,1/2]d) ≤ B,
and all 0 < p ≤ 2, we have

∥Rϱ(Λε)(•,Rϱ(Φ)(•))− χ∏d
i=1[ai,bi]

·Rϱ(Φ)∥Lp([− 1
2 ,

1
2 ]

d) ≤ ε.

Proof. We set ε̃ := 2⌊log2(ε/(2B
√
2d))⌋ ≤ ε/(2B

√
2d). Because of ε ∈ (0, 1/2), there exists a constant

s1 = s1(d,B) ∈ N such that there are ãi, b̃i ∈ [−ε−s1 , ε−s1 ] ∩ 2−s1⌈log2(1/ε)⌉Z with |ãi − ai| < ε̃2 and
|b̃i − bi| < ε̃2 for all i = 1, . . . , d.

We first construct for each i ∈ {1, . . . , d} the following map ti, which is clearly the realization of a two
layer neural network with at most 12 non-zero, (s2, ε)-quantised weights, for some s2 = s2(d,B) ∈ N:

ti(x) := ϱ

(
x− ãi
ε̃2

)
− ϱ

(
x− ãi − ε̃2

ε̃2

)
− ϱ

(
x− b̃i + ε̃2

ε̃2

)

+ ϱ

(
x− b̃i
ε̃2

)

for x ∈
[
−1

2
,
1

2

]
.

A simple computation yields that if b̃i − ãi > 2ε̃2 then

ti(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 for x ∈ R \ [ãi, b̃i],
x−ãi
ε̃2 for x ∈ [ãi, ãi + ε̃2],

1 for x ∈ [ãi + ε̃2, b̃i − ε̃2],

1− x−(b̃i−ε̃2)
ε̃2

for x ∈ [b̃i − ε̃2, b̃i].

We continue defining the function nε : Rd × R → R which will be the realization of Λε. Let B0 :=
2⌈log2 B⌉. If b̃i − ãi > 2ε̃2 holds for all i = 1, . . . , d then we define

nε(x, y) := B0 · ϱ
(

d∑

i=1

ti(xi) + ϱ

(
y

B0

)
− d

)

−B0 · ϱ
(

d∑

i=1

ti(xi) + ϱ

(
− y

B0

)
− d

)

.

Otherwise (i.e., if b̃i− ãi ≤ 2ε̃2 for some i ∈ {1, . . . , d}), we set nε ≡ 0. In both cases, it is easy to see that
nε is the realization of a four layer neural network Λε with at most c = c(d) non-zero, (s3, ε)-quantised
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weights, for some s3 = s3(d,B) ∈ N. Further, in both cases, the following holds for all y ∈ [−B,B] ⊂
[−B0, B0]: If x ∈

∏d
i=1[ãi + ε̃2, b̃i − ε̃2] then nε(y) = y, and if x ∈ Rd \

∏d
i=1[ãi, b̃i], then nε(y) = 0.

Moreover,
∏d

i=1[ãi, b̃i]\
∏d

i=1[ãi+ ε̃
2, b̃i− ε̃2] has Lebesgue measure bounded by 2dε̃2 ≤ ε2/(2B)2. Finally,

it is not hard to see (using the monotonicity of ϱ(x) = x+) that −B ≤ −ϱ(y) ≤ nε(x, y) ≤ ϱ(y) ≤ B for
arbitrary y ∈ [−B,B]. Therefore, for any measurable f : [−1/2, 1/2]d → [−B,B], we have

∥nε(•, f(•))− χ∏d
i=1[ai,bi]

· f∥L2 ≤∥nε(•, f(•))− χ∏d
i=1[ãi,b̃i]

· f∥L2

+ ∥χ∏d
i=1[ãi,b̃i]

· f − χ∏d
i=1[ai,bi]

· f∥L2.

By the previous considerations, and since |f | ≤ B, we can estimate

∥nε(•, f(•))− χ∏d
i=1[ãi,b̃i]

· f∥L2 ≤
(

ε2

(2B)2

) 1
2

· B ≤ ε

2
.

Since 2dε̃2 ≤ ε2/(2B)2, and since |ãi − ai| ≤ ε̃2 and |b̃i − bi| ≤ ε̃2 for all i ∈ {1, . . . , d}, we also have

∥χ∏d
i=1[ãi,b̃i]

· f − χ∏d
i=1[ai,bi]

· f∥L2 ≤
(

ε2

(2B)2

) 1
2

· B ≤ ε

2
.

In combination these estimates imply the result (for the case p = 2), by choosing f = Rϱ(Φ). Since
[−1/2, 1/2]d (with the Lebesgue measure) is a probability space, the claim for 0 < p < 2 follows from
Jensen’s inequality.

For technical reasons we require the following refinement of Lemma A.5.

Lemma A.6. Let d,m, s ∈ N, and ε ∈ (0, 1/2), and let Φ be a neural network with m-dimensional output
and d-dimensional input, with (s, ε)-quantised weights, and such that ∥[Rϱ(Φ)]ℓ∥L∞([−1/2,1/2]d) ≤ B for
some B ≥ 1 and all ℓ = 1, . . . ,m. Let −1/2 ≤ ai,ℓ ≤ bi,ℓ ≤ 1/2 for i = 1, . . . , d and ℓ = 1, . . . ,m.

Then, there exist constants c = c(d) > 0, s0 = s0(d,B) ∈ N, and a neural network Ψε with d-
dimensional input layer and 1-dimensional output layer, with at most 6 + L(Φ) layers, and at most
c · (m+ L(Φ) +M(Φ)) non-zero, (max{s, s0}, ε/m)-quantised weights, such that

∥∥∥∥∥Rϱ(Ψε)−
m∑

ℓ=1

χ∏d
i=1[ai,ℓ,bi,ℓ]

· [Rϱ(Φ)]ℓ

∥∥∥∥∥
L2([− 1

2 ,
1
2 ]

d)

≤ ε.

Proof. For each ℓ ∈ {1, . . . ,m} let Λℓε be the neural network provided by Lemma A.5 applied with
ai = ai,ℓ, bi = bi,ℓ and ε/m instead of ε. There exists c0 = c0(d), s0 = s0(d,B) such that Λℓε has at most
c0 nonzero, (s0, ε/m)-quantised weights and four layers. Let Pℓ ∈ R(d+1)×(d+m) be the matrix associated
(via the standard basis) to the linear map Rd × Rm ∋ (x, y) (→ (x, yℓ) ∈ Rd × R1, and let Φℓ := ((Pℓ, 0))
be the associated 1-layer network. Clearly, Φℓ has d+ 1 nonzero, (1, ε)-quantised weights.

Next, let L := L(Φ), and set Φ̃ := P (ΦId
d,L,Φ), where ΦId

d,L is as in Remark 2.4, so that ΦId
d,L has

L = L(Φ) layers and 2d ·L(Φ) nonzero, (1, ε)-quantised weights, and Rϱ(ΦId
d,L) = IdRd . We conclude that

Φ̃ has L(Φ) layers, and at most M(Φ) + 2dL(Φ) nonzero, (s, ε)-quantised weights.
Additionally, we define Φsum := ((Asum, bsum)) where

Asum := (1, 1, . . . , 1) ∈ R
1×m, and bsum := 0.

Φsum has exactly m non-zero, (1, ε)-quantised weights and one layer.
Finally, define

Ψε := Φsum ⊙ P (Λ1
ε ⊙ Φ1, P (. . . , P (Λm−1

ε ⊙ Φm−1,Λ
m
ε ⊙ Φm))) ⊙ Φ̃.

By Remark 2.6 we have that Ψε has 1 + 5 + L(Φ) layers and at most

4(m+m · 2(d+ 1 + c0) +M(Φ) + 2dL(Φ)) ≤ c · (m+ L(Φ) +M(Φ))

nonzero, (max{s0, s}, ε/m) weights for a constant c = c(d) > 0.
We observe that

Rϱ(Ψε)(x) =
m∑

ℓ=1

Rϱ(Λ
ℓ
ε) (x, [Rϱ(Φ)(x)]ℓ) for x ∈ R

d
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and hence by the triangle inequality
∥∥∥∥∥∥
Rϱ(Ψε)−

∑

ℓ≤m

χ∏d
i=1[ai,ℓ,bi,ℓ]

· [Rϱ(Φ)]ℓ

∥∥∥∥∥∥
L2([− 1

2 ,
1
2 ]

d)

≤
∑

ℓ≤m

∥∥∥Rϱ(Λℓ,ε) (•, [Rϱ(Φ)(•)]ℓ)− χ∏d
i=1[ai,ℓ,bi,ℓ]

· [Rϱ(Φ)]ℓ
∥∥∥
L2([− 1

2 ,
1
2 ]

d)

(∗)
≤
∑

ℓ≤m

ε

m
= ε,

where the step marked with (∗) holds by choice of the neural networks Λℓε, see Lemma A.5.

Our next larger goal is to show that neural networks can well approximate smooth functions with
respect to the L2 norm, in such a way that the number of layers does not grow with the approximation
accuracy, only with the smoothness of the function. A central ingredient for the proof is the local
approximation of smooth functions via their Taylor polynomials. Precisely, we need the following result,
which is probably folklore:

Lemma A.7. Let β ∈ (0,∞), and write β = n + σ with n ∈ N0 and σ ∈ (0, 1], and let d ∈ N. Then
there is a constant C = C(β, d) > 0 with the following property:

For each f ∈ Fβ,d,B and arbitrary x0 ∈ (−1/2, 1/2)d, there is a polynomial p(x) =
∑

|α|≤n cα(x− x0)α

with cα ∈ [−C ·B,C · B] for all α ∈ Nd
0 with |α| ≤ n such that

|f(x)− p(x)| ≤ C · B · |x− x0|β for all x ∈ [−1/2, 1/2]d .

In fact, p = pf,x0 is the Taylor polynomial of f of degree n.

Proof. In case of n = 0, the claim is trivial: If we set p(x) := f(x0), then |f(x0)| ≤ ∥f∥C0,β ≤ B, and

|f(x)− p(x)| = |f(x) − f(x0)| ≤ ∥f∥C0,β · |x− x0|σ ≤ B · |x− x0|β ,

as desired. Therefore, we can from now on assume n ∈ N.
In the following, we use a slightly different multi-index notation, to be compatible with the notation

in [33]: We write d := {1, . . . , d}, and for I = (i1, . . . , im) ∈ dm with m ∈ N, we write ∂If := ∂i1 · · ·∂imf
and yI = yi1 · · · yim for y ∈ Rd. Using this notation, the Taylor polynomial of f of degree n− 1 at x0 is
given by

p0(x) := f(x0) +
n−1∑

m=1

1

m!

∑

I∈dm

(∂If)(x0) · (x − x0)
I .

Taylor’s theorem with integral remainder (see [33, Theorem C.15]) shows for x ∈ (−1/2, 1/2)d that

f(x)− p0(x)

=
1

(n− 1)!
·
∑

I∈dn

(x− x0)
I

∫ 1

0
(1 − t)n−1∂If(x0 + t(x − x0))dt

=
1

(n− 1)!

⎛

⎝
∑

I∈dn

(x − x0)
I

∫ 1

0
(1−t)n−1∂If(x0)dt

+
∑

I∈dn

(x − x0)
I

∫ 1

0
(1−t)n−1[∂If(x0+t(x− x0))− ∂If(x0)]dt

⎞

⎠

=
1

n!
·
∑

I∈dn

∂If(x0) · (x− x0)
I +

1

(n− 1)!

∑

I∈dn

(x− x0)
I

∫ 1

0
(1− t)n−1[∂If(x0 + t(x − x0))− ∂If(x0)]dt

=: q(x) +R(x).

But p := p0 + q is the Taylor polynomial of f of degree n at x0, and p(x) =
∑

|α|≤n cα(x − x0)α for
certain cα ∈ R, which are easily seen to satisfy

|cα| ≤
∑

I∈d|α| with α=i1+···+i|α|

|∂If(x0)| ≤ d|α| · B ≤ dn · B.
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Finally, since ∂If is σ Hölder continuous with Lipσ(∂If) ≤ ∥f∥C0,β ≤ B for I ∈ dn, we get

|f(x)− p(x)| = |R(x)| ≤ 1

(n− 1)!
·
∑

I∈dn

|(x− x0)
I | ·
∫ 1

0
(1 − t)n−1B · |t(x− x0)|σdt

≤ dn

n!
|x− x0|n · B · |x− x0|σ ≤ C ·B · |x− x0|β

for a suitable constant C = C(d, n) = C(d,β). By continuity, this estimate holds for all x ∈ [−1/2, 1/2]d,
not just for x ∈ (−1/2, 1/2)d.

Now, we can finally prove our main result about the L2-approximation of smooth functions using
ReLU networks.

Theorem A.8. For any d ∈ N, and β, B > 0, there exist constants c = c(d,β, B) > 0, s = s(d,β, B) ∈ N,
c′ > 0, and L = L(β, d) ∈ N with L ≤ c′ · (1 + ⌈log2(1 + β)⌉) · (1 + β/d), such that for any function
f ∈ Fβ,d,B and any ε ∈ (0, 1/2), there is a neural network Φf

ε with at most L layers, and at most c · ε−d/β

non-zero, (s, ε)-quantised weights such that for all p ∈ (0, 2],

∥Rϱ(Φf
ε )− f∥Lp([−1/2,1/2]d) < ε.

Proof. As in the proof of Lemma A.5, it suffices to consider the case p = 2, thanks to Jensen’s inequality.
Also, we only need to consider the case B = 1, since the general case follows by reweighting. Let β = n+σ
with n ∈ N0 and σ ∈ (0, 1]. Further, let N ∈ N be arbitrary, and set for λ ∈ {1, . . . , N}d

Iλ :=
d∏

i=1

[
λi − 1

N
− 1

2
,
λi
N

− 1

2

]
.

As a result, we have (with disjointness up to null-sets) that

•⋃

λ∈{1,...,N}d

Iλ =

[
−1

2
,
1

2

]d
, and Iλ ⊂ B

∥.∥ℓ∞

1
N

(x) ⊂ B
|·|
d
N
(x), for all x ∈ Iλ. (A.3)

Choose for all λ ∈ {1, . . . , N}d a point xλ in the interior of Iλ, and set cλ,α := ∂αf(xλ)/α! for α ∈ Nd
0

with |α| ≤ n. Note |cλ,α| ≤ B. Then we take Φp
ε/4 as in Lemma A.4 with accuracy ε/4 and m = Nd, and

with B0 := max{1, 2⌈log2 B⌉} instead of B. By Lemma A.4, Φp
ε/4 has at most L1 = L1(d,β) layers, with

L1 ≤ c′ · (1+ ⌈log2(1+β)⌉) · (1+ β/d), and at most c1(ε−d/β+Nd) non-zero, (s, ε)-quantised weights (see
also Remark 2.10), for certain s = s(d,β, B) ∈ N, c1 = c1(d,β, B) > 0, and an absolute constant c′ ∈ N.
We compute ∥∥∥∥∥∥

f −
∑

λ∈{1,...,N}d

χIλ [Rϱ(Φ
p
ε/4)]λ

∥∥∥∥∥∥
L∞

≤ sup
λ∈{1,...,N}d

x∈Iλ

|f(x)− [Rϱ(Φ
p
ε/4)]λ(x)|.

By construction of Φp
ε/4, we conclude that

sup
λ∈{1,...,N}d

x∈Iλ

∣∣∣f(x)− [Rϱ(Φ
p
ε/4)]λ(x)

∣∣∣ ≤ sup
λ∈{1,...,N}d

x∈Iλ

∣∣∣∣∣∣
f(x)−

∑

|α|≤n

∂αf(xλ)

α!
(x− xλ)

α

∣∣∣∣∣∣
+
ε

4
. (A.4)

Now, note for y ∈ R that max{y,−B0} = ϱ(y +B0)−B0 and min{y,B0} = B0 − ϱ(B0 − y). Therefore,
we can slightly modify the neural network Φp

ε/4 to obtain a network Ψp
ε/4 with essentially∗ the same

complexity as Φp
ε/4 and such that [Rϱ(Ψ

p
ε/4)]λ = min{B0,max{−B0, [Rϱ(Φ

p
ε/4)]λ}} for all λ ∈ {1, . . . , N}d.

Since we have −B0 ≤ −B ≤ f ≤ B ≤ B0, it is not hard to see that (A.4) remains valid also for Ψp
ε/4. In

the following, we will thus simply write Φp
ε/4 for Ψp

ε/4.

Using Lemma A.7 and Equation (A.3) we obtain an absolute constant C = C(d,β) > 0 such that

sup
λ∈{1,...,N}d

x∈Iλ

∣∣∣∣∣∣
f(x)−

∑

|α|≤n

∂αf(xλ)

α!
(x− xλ)

α

∣∣∣∣∣∣
≤ CB

(
d

N

)β
.

∗Precisely, the constants c′, c1, s can be slightly enlarged in such a way that Ψp
ε/4 satisfies the same complexity estimates

as Φp
ε/4

.
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Now, choose

N :=

⌈( ε

4CBdβ

)− 1
β

⌉
, so that sup

λ∈{1,...,N}d

x∈Iλ

|f(x)− [Rϱ(Φ
p
ε/4)]λ(x)| ≤

ε

2
.

By the triangle inequality, we see that we are done if there is a network Ψε with quantised weights, at
most L ≤ c′′ ·(1+⌈log2(1+β)⌉)·(1+β/d) layers for an absolute constant c′′, and at most c ·ε−d/β non-zero
weights satisfying ∥Rϱ(Ψε)−

∑
λ∈{1,...,N}d χIλ [Rϱ(Φ

p
ε/4)]λ∥L2 ≤ ε/2, which we verify by applying Lemma

A.6.
Indeed, if we apply that lemma, with ε/2 instead of ε, with Φ = Φp

ε/4 and m = Nd, and with the

intervals Iλ, λ ∈ {1, . . . , N}d, then we get a neural network Ψε which satisfies the desired estimate.
Furthermore, Ψε has 6+L(Φp

ε/4) ≤ 6+L1 ≤ c′′ · (1 + ⌈log2(1 + β)⌉) · (1 + β/d) layers, for an absolute

constant c′′ > 0. Moreover, Ψε has at most

c · (Nd + L(Φp
ε/4) +M(Φp

ε/4)) ≤ c · (Nd + L1 +M(Φp
ε/4)) ≤ c2 · (Nd + c1(ε

−d/β +Nd))

non-zero, (max{s, s0}, ε/(2Nd))-quantised weights, with constants c = c(d) > 0, c2 = c2(d,β, B) > 0,
and s0 = s0(d,B) ∈ N. By choice of N , this shows that Ψε has the correct number of nonzero weights.

Finally, we have ε/(2Nd) ≥ c3 · ε1+d/β, for c3 = c3(d,β, B) so that Remark 2.10 shows that the
weights of Ψε are quantised as stated in the theorem.

A.3 Approximation of horizon functions

We proceed to construct networks that yield good approximations of horizon functions. The underlying
idea is relatively straightforward: We have already seen in Lemma A.1 that networks yield approximate
realizations of Heaviside functions. Since a horizon function is simply a smoothly transformed Heaviside
function, we only need to realize the smooth transformation with a network. This is possible with
Theorem A.8. The following lemma makes these arguments rigorous.

Lemma A.9. For any β > 0, d ∈ N≥2, and B > 0 there exists an absolute constant c′ > 0, and constants
c = c(d,β) > 0, s = s(d,β, B) ∈ N, and L = L(d,β) such that L ≤ c′ ·(1+⌈log2(1+β)⌉)·(1+β/d) and such
that for every function f ∈ HFβ,d,B and every ε ∈ (0, 1/2) there is a neural network Φf

ε with at most L
layers, and at most c·ε−2(d−1)/β non-zero, (s, ε)-quantised weights, such that ∥Rϱ(Φf

ε )−f∥L2([−1/2,1/2]d) <
ε. Moreover, 0 ≤ Rϱ(Φf

ε )(x) ≤ 1 for all x ∈ [−1/2, 1/2]d.

Proof. Since multiplying A1 in the definition of a neural network Φ = ((A1, b1), . . . , (AL, bL)) by a
permutation matrix does not change the number of layers or weights, or the possible values of the non-zero
weights, we can certainly restrict ourselves to horizon functions f ∈ HFβ,d,B for which the permutation
matrix T from Definition 3.3 is the identity matrix. Choose γ ∈ Fβ,d−1,B such that f = H ◦ γ̃, where
H = χ[0,∞)×Rd−1 is the Heaviside function, and where

γ̃(x) = (x1 + γ(x2, . . . , xd), x2, . . . , xd), for x = (x1, . . . , xd) ∈ [−1/2, 1/2]d .

Theorem A.8 (applied with p = 1, with d− 1 instead of d and with ε2/16 instead of ε) yields a uniform
constant c′ > 0, and a network Φγε with at most L = L(d,β) ≤ c′ · (1+ ⌈log2(1+β)⌉) · (1+ β/d) layers and
at most c · ε−2(d−1)/β non-zero weights (where c = c(d,β, B) ∈ N) such that γε := Rϱ(Φγε ) approximates
γ with an L1-error of less than ε2/16. We also recall (by invoking Remark 2.10) that it is possible to
construct this network with (s, ε)-quantised weights, for some s = s(d,β, B) ∈ N.

Clearly, one can construct a network Φγ̃ε of the same complexity (number of non-zero weights, layers,
quantization and size of the weights) up to absolute multiplicative constants which satisfies Rϱ(Φγ̃ε )(x) =
(x1 + γε(x2, . . . , xd), x2, . . . , xd) for all x ∈ Rd.

As a second step, we invoke Lemma A.1 to obtain a neural network ΦH
ε′ with two layers and five

weights such that |H(x) − Rϱ(ΦH
ε′ )(x)| ≤ χ0≤x1≤ε′2/16(x) and 0 ≤ Rϱ(ΦH

ε′ )(x) ≤ 1 for all x ∈ Rd. We
choose ε′ ∈ 2−N so that ε/2 ≤ ε′ ≤ ε. With this choice, Lemma A.1 shows that all weights of ΦH

ε′ are
elements of [−ε−4, ε−4] ∩ Z.

Remark 2.6 shows that there is an absolute constant c′′ > 0 and certain constants c̃ = c̃(d,β, B) ∈ N

and L̃ = L̃(d,β) ≤ c′′ · (1 + ⌈log2(1 + β)⌉) · (1 + β/d) such that ΦH
ε′ ⊙Φγ̃ε is a neural network with at most

L̃ layers, and not more than c̃ · ε−2(d−1)/β non-zero weights, all of which are elements of [−ε−s′ , ε−s′ ] ∩
2−s′⌈log2(1/ε)⌉ for a suitable s′ = s′(d,β, B) ∈ N. Furthermore, we have 0 ≤ Rϱ(ΦH

ε′ ⊙ Φγ̃ε ) ≤ 1, since
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0 ≤ Rϱ(ΦH
ε′ ) ≤ 1. Thus, to complete the proof, it remains to show that Rϱ(ΦH

ε′ ⊙Φγ̃ε ) indeed approximates
f = H ◦ γ̃ with an L2-error of at most ε.

To this end, we estimate

∥H ◦ γ̃ − Rϱ(Φ
H
ε′ ⊙ Φγ̃ε )∥L2 = ∥H ◦ γ̃ − Rϱ(Φ

H
ε′ ) ◦ Rϱ(Φγ̃ε )∥L2

≤ ∥H ◦ γ̃ −H ◦ Rϱ(Φγ̃ε )∥L2 + ∥H ◦ Rϱ(Φγ̃ε )− Rϱ(Φ
H
ε′ ) ◦Rϱ(Φγ̃ε )∥L2 =: I + II.

We continue with the term I. Here we use the shorthand notation χγ̃1>0 for the indicator function
of the set {x ∈ [−1/2, 1/2]d : γ̃1(x) > 0} and variations thereof. Moreover, we denote by Rϱ(Φγ̃ε )1 the
first coordinate of the Rd-valued function Rϱ(Φγ̃ε ). Recall from our choice of Φγ̃ε that Rϱ(Φγ̃ε )1(x) =
x1 + γε(x2, . . . , xd) for all x ∈ [−1/2, 1/2]d. Having set the notation, we estimate

I2 = ∥H ◦ γ̃ −H ◦ Rϱ(Φγ̃ε )∥2L2 =

∫

[− 1
2 ,

1
2 ]

d

|χγ̃1≥0(x) − χRϱ(Φ
γ̃
ε )1≥0(x)|

2dx

=

∫

[− 1
2 ,

1
2 ]

d−1

∫ 1
2

− 1
2

χγ̃1≥0,Rϱ(Φ
γ̃
ε )1<0(x1, . . . , xd) + χγ̃1<0,Rϱ(Φ

γ̃
ε )1≥0(x1, . . . , xd)dx1 d(x2, . . . , xd).

Now, we observe for fixed (x2, . . . , xd) ∈ [−1/2, 1/2]d−1 the following equivalence:

χγ̃1≥0,Rϱ(Φ
γ̃
ε )1<0(x) = 1 ⇐⇒ x1 + γ(x2, . . . , xd) ≥ 0 and x1 + γε(x2, . . . , xd) < 0

⇐⇒ x1 ∈ [−γ(x2, . . . , xd),−γε(x2, . . . , xd)).

This implies

∫ 1
2

− 1
2

χγ̃1≥0,Rϱ(Φ
γ̃
ε )1<0(x1, . . . , xd)dx1 ≤ max{0, γ(x2, . . . , xd)− γε(x2, . . . , xd)}.

By the same reasoning,
∫ 1/2
−1/2 χγ̃1<0,Rϱ(Φ

γ̃
ε )1≥0(x1, . . . , xd)dx1 ≤ max{0, γε(x2, . . . , xd)−γ(x2, . . . , xd)}. In

total, we get because of max{0, x}+max{0,−x} = |x| that

I2=

∫

[− 1
2 ,

1
2 ]

d−1

∫ 1
2

− 1
2

χγ̃1≥0,Rϱ(Φ
γ̃
ε )1<0(x1, . . . , xd) + χγ̃1<0,Rϱ(Φ

γ̃
ε )1≥0(x1, . . . , xd)dx1 d(x2, . . . , xd)

≤
∫

[− 1
2 ,

1
2 ]

d−1

max{0, γ(x2, . . . , xd)−γε(x2, . . . , xd)}+max{0, γε(x2, . . . , xd)−γ(x2, . . . , xd)}d(x2, . . . , xd)

= ∥γ − γε∥L1([− 1
2 ,

1
2 ]

d−1) ≤
ε2

16
,

and hence I ≤ ε/4.
We proceed with the term II and recall that |H(x)−Rϱ(ΦH

ε′ )(x)| ≤ χ0≤x1≤(ε′)2/16(x) ≤ χ0≤x1≤ε2/16(x)
for all x ∈ Rd. Therefore,

II2 =∥H ◦ Rϱ(Φγ̃ε )− Rϱ(Φ
H
ε′ ) ◦ Rϱ(Φγ̃ε )∥2L2 ≤

∫

[− 1
2 ,

1
2 ]

d

χ
0≤Rϱ(Φ

γ̃
ε )1≤ ε2

16
(x)dx

=

∫

[− 1
2 ,

1
2 ]

d−1

∫ 1
2

− 1
2

χ
0≤x1+γε(x2,...,xd)≤ ε2

16
dx1d(x2, . . . , xd) ≤

∫

[− 1
2 ,

1
2 ]

d−1

ε2

16
d(x2, . . . , xd) =

ε2

16
.

In conclusion, we obtain

∥H ◦ γ̃ − Rϱ(Φ
H
ε′ ⊙ Φγ̃ε )∥L2 ≤ I + II ≤ ε

4
+
ε

4
< ε.

A.4 Approximation of piecewise constant functions

Since for K ∈ Kr,β,d,B we have that χK is locally a horizon function, it is straightforward to use Lemma
A.9 to construct neural networks approximately realizing such functions.

Theorem A.10. Let r ∈ N, d ∈ N≥2 and β, B > 0 be arbitrary. Then there is an absolute constant
c′ > 0 and there are constants c = c(d,β, r, B) > 0, s = s(d,β, r, B) ∈ N, and L = L(β, d) ∈ N with
L ≤ c′ · (1 + ⌈log2(1 + β)⌉) · (1 + β/d) and such that for all ε ∈ (0, 1/2) and arbitrary K ∈ Kr,β,d,B there
exists a neural network ΦK

ε with at most L layers and at most c · ε−2(d−1)/β non-zero, (s, ε)-quantised
weights such that

∥Rϱ(ΦK
ε )− χK∥L2([− 1

2 ,
1
2 ]

d) ≤ ε.
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Proof. For λ = (λ1, . . . ,λd) ∈ {1, . . . , 2r}d, define

Iλ :=
∏

i∈{1,...,d}

[
(λi − 1)2−r − 1

2
,λi2

−r − 1

2

]
.

We have by construction (with disjointness up to null sets) that

•⋃

λ∈{1,...,2r}d

Iλ =

[
−1

2
,
1

2

]d
and Iλ ⊂ B∥·∥ℓ∞

2−r (x) for all x ∈ Iλ.

As a consequence of the definition of Kr,β,d,B, we conclude that χIλχK = χIλfλ for a suitable horizon
function fλ ∈ HFβ,d,B and arbitrary λ ∈ {1, . . . , 2r}d.

Now, for each λ ∈ {1, . . . , 2r}d, Lemma A.9 yields a neural network Φλε such that

∥Rϱ(Φλε )− fλ∥L2 ≤ ε

2rd+1
and such that 0 ≤ Rϱ(Φ

λ
ε )(x) ≤ 1 for x ∈

[
−1

2
,
1

2

]d
.

By Lemma A.9 and Remark 2.10 there exists c1 = c1(d,β, B, r) > 0, c′ > 0, s1 = s1(d,β, B, r) ∈ N,
and L1 = L1(d,β) ≤ c′ · (1 + ⌈log2(1 + β)⌉) · (1 + β/d), such that Φλε has at most L1 layers and at most
c1 · ε−2(d−1)/β non-zero, (s1, ε)-quantised weights.

Next, by possibly replacing Φλε by ΦId
1,Lλ

⊙Φλε with ΦId
1,Lλ

as in Remark 2.4 and for Lλ = L1−L(Φλε ),

we can assume that each network Φλε has exactly L1 layers. Note in view of Remark 2.6 and because of
L1 = L1(d,β) that this will not change the quantisation of the weights, and that the number of weights
of Φλε is still bounded by c′1 · ε−2(d−1)/β for a suitable constant c′1 = c′1(d,β, B, r). For simplicity, we will
write c1 instead of c′1 in what follows.

Now, write {1, . . . , 2r}d = {λ1, . . . ,λ2rd}, and set

Φ := P (Φλ1
ε , P (. . . , P (Φ

λ2rd−1
ε ,Φ

λ2rd
ε ) . . . )).

Note that Φ has L1 layers, and at most 2rd · c1 · ε−2(d−1)/β ≤ c2 · ε−2(d−1)/β nonzero, (s1, ε)-quantised
weights, for a suitable constant c2 = c2(d,β, B, r).

Finally, an application of Lemma A.6 with m = 2rd and B = 1, with ε/2 instead of ε, and with the
intervals Iλℓ , ℓ ∈ {1, . . . , 2rd} yields a network Ψ satisfying

∥Rϱ(Ψ)− χK∥L2 ≤

∥∥∥∥∥∥
Rϱ(Ψ)−

∑

ℓ=1,...,2rd

χIλℓ
[Rϱ(Φ)]ℓ

∥∥∥∥∥∥
L2

+

∥∥∥∥∥∥

∑

ℓ=1,...,2rd

χIλℓ
· ([Rϱ(Φ)]ℓ − fλℓ)

∥∥∥∥∥∥
L2

≤ ε

2
+

2rd∑

ℓ=1

∥Rϱ(Φλℓ
ε )− fλℓ∥L2 ≤ ε.

Here, we used that χK =
∑
ℓ=1,...,2rd χIλℓ

χK =
∑

ℓ=1,...,2rd χIλℓ
fλℓ , with equality almost everywhere,

and that [Rϱ(Φ)]ℓ = Rϱ(Φλℓ
ε ), by construction of Φ.

To complete the proof, it remains to verify that ΦK
ε := Ψ has the required complexity. But Lemma

A.6 shows that Ψ has at most 6+L(Φ) = 6+L1 layers, which is easily seen to satisfy the required bound.
Furthermore, the same lemma also shows that the weights of Ψ are (max{s0, s1}, ε/21+rd)-quantised, for
a constant s0 = s0(d) ∈ N, so that Remark 2.10 shows that Ψ has (s2, ε)-quantised weights, for a suitable
constant s2 = s2(d,β, B, r) ∈ N. Finally, the lemma also shows

M(Ψ) ≤ c · (2rd + L1 +M(Φ)) ≤ c3 · ε−2(d−1)/β,

for suitable constants c = c(d) > 0 and c3 = c3(d,β, B, r) > 0, as desired.

Theorem A.10 yields an approximation result by neural networks of functions that are piecewise con-
stant. However, a simple extension allows us to also approximate piecewise smooth functions optimally.

Corollary A.11. Let r ∈ N, d ∈ N≥2, and B,β > 0. Then there exist constants c = c(d,β, r, B) > 0,
s = s(d,β, B, r) ∈ N, c′ > 0, and L = L(d,β) ∈ N with L ≤ c′ · (1 + ⌈log2(1 + β)⌉) · (1 + β/d), such that
for all ε ∈ (0, 1/2) and all f ∈ Er,β,d,B there exists a neural network Φf

ε with at most L layers, and at
most c · ε−2(d−1)/β non-zero, (s, ε)-quantised weights, such that

∥Rϱ(Φf
ε )− f∥L2([− 1

2 ,
1
2 ]

d) ≤ ε.
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Proof. Let ε ∈ (0, 1/2) and f = χK · g with g ∈ Fβ′,d,B and K ∈ Kr,β,d,B, where we recall β′ = dβ/2(d−1),
so that d/β′ = 2(d−1)/β. Note because of d ≥ 2 that d/2 ≤ d − 1 ≤ d, and hence β′ ≤ β, so that
1+ β′/d ≤ 1+ β/d and 1+ ⌈log2(1+β′)⌉ ≤ 1+ ⌈log2(1+β)⌉. We start by constructing the following three
networks:

Theorem A.10 yields certain constants c1 = c1(d,β, r, B) > 0, c′ > 0, s1 = s1(d,β, r, B) ∈ N, and
L1 = L1(β, d) ≤ c′ · (1 + ⌈log2(1 + β)⌉) · (1 + β/d), and a network ΦK

ε with no more than L1 layers and
at most c1 · ε−2(d−1)/β non-zero, (s1, ε)-quantised weights, such that 0 ≤ Rϱ(ΦK

ε ) ≤ 1 and

∥Rϱ(ΦK
ε )− χK∥L2 ≤ ε

3B
.

Likewise, since β′ = β′(β, d) ≤ β (see the beginning of the proof), Theorem A.8 yields c2 = c2(d,β, B),
s2 = s2(d,β, B) ∈ N, c′′ > 0, and L2 = L2(β, d) with

L2 ≤ c′′ · (1 + ⌈log2(1 + β′)⌉) · (1 + β′/d) ≤ c′′ · (1 + ⌈log2(1 + β)⌉) · (1 + β/d),

and a network Φg
ε with no more than L2 layers and at most c2 · ε−d/β′

= c2 · ε−2(d−1)/β non-zero,
(s2, ε)-quantised weights, such that

∥Rϱ(Φg
ε)− g∥L2 ≤ ε

3
.

Set B0 := 2⌈log2 max{1,B}⌉, and note |g| ≤ B ≤ B0. Precisely as in the proof of Theorem A.8 (after
Equation (A.4)), we see that by adding an additional layer (with a constant number of quantised weights)
to Φεg, we can (and will) assume −B0 ≤ Rϱ(Φεg) ≤ B0.

Finally, Lemma A.2 (applied with θ = 2(d−1)/β ≥ d/β, with L(0)
3 := ⌈2β/d⌉ instead of L, and with

M = B0), combined with Remark 2.10 yields constants c3 = c3(d,β, B), c′′′ > 0, s3 = s3(B), and

L3 = L3(β, d) ≤ c′′′L(0)
3 ≤ 2c′′′(1 + log2(1 + β))(1 + β/d), and a network ×̃ with at most L3 layers and at

most c3 · ε−θ = c3 · ε−2(d−1)/β non-zero, (s3, ε)-quantised weights such that

|xy − Rϱ(×̃)(x, y)| ≤ ε

3
for all x, y ∈ [−B0, B0] .

As usual, we can assume L(ΦK
ε ) = L(Φg

ε) = max{L2, L3}, by possibly switching to ΦId
1,λ1

⊙ ΦK
ε and

to ΦId
1,λ2

⊙ Φg
ε for λ1 = max{L2, L3} − L(ΦK

ε ) and λ2 = max{L2, L3} − L(Φg
ε). This might necessitate

changing the constants c′′, c′′′ and c2, c3, but these constants stay of the required form.
Now, we set Φf

ε := ×̃ ⊙ P (ΦK
ε ,Φg

ε). By Remark 2.6, Φf
ε has at most max{L1, L2} + L3 layers and

c4 ·ε−2(d−1)/β non-zero, (max{s1, s2, s3}, ε)-quantised weights, for a suitable c4 = c4(d,β, r, B) > 0. Since
β′ ≤ β (see the beginning of the proof) independent of d, there exists an absolute constant c′′′′ > 0 such
that

max{L1, L2}+ L3 ≤ c′′′′ · (1 + ⌈log2(1 + β)⌉) · (1 + β/d).

Finally, we show that Φf
ε satisfies the claimed error bound. To this end, we estimate

∥Rϱ(Φf
ε )− f∥L2 = ∥Rϱ(×̃)(Rϱ(Φ

K
ε ),Rϱ(Φ

g
ε))− f∥L2

≤ ∥Rϱ(×̃)(Rϱ(Φ
K
ε ),Rϱ(Φ

g
ε))− Rϱ(Φ

K
ε ) ·Rϱ(Φg

ε)∥L2 + ∥Rϱ(ΦK
ε ) ·Rϱ(Φg

ε)− f∥L2

≤ ε

3
+ ∥Rϱ(ΦK

ε ) · [Rϱ(Φg
ε)− g]∥L2 + ∥g · [Rϱ(ΦK

ε )− χK ]∥L2 .

We continue by recalling 0 ≤ Rϱ(ΦK
ε ) ≤ 1, so that

∥Rϱ(ΦK
ε ) · [Rϱ(Φg

ε)− g]∥L2 ≤ ∥Rϱ(Φg
ε)− g∥L2 ≤ ε

3
. (A.5)

Moreover, since g ∈ Fβ′,d,B, so that ∥g∥sup ≤ B, we also have

∥g · [Rϱ(ΦK
ε )− χK ]∥L2 ≤ B · ∥Rϱ(ΦK

ε )− χK∥L2 ≤ ε

3
.

Combining all estimates above yields ∥Rϱ(Φf
ε )− f∥L2 ≤ ε, as desired.

B Lower bounds for the approximation of horizon functions

In this section, we give the proofs of Theorem 4.2, which establishes a lower bound for approximation
uniformly over the class of horizon functions, and of Theorem 4.3, which establishes a similar lower
bound for the approximation of a single judiciously chosen horizon function f .

Since the proof of the lower bound for the uniform setting is simpler but contains most of the crucial
ideas, we begin with this setting. The improvement to a lower bound for the approximation of a single
function is then obtained by a suitable application of the Baire category theorem.
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B.1 Lower bounds for the uniform setting

The general idea is as follows: In Lemma B.4, we show that if we denote by

NNB,ϱ
M,K,d := {Rϱ(Φ) : Φ ∈ NNB

M,K,d}

the set of all realizations (with activation function ϱ) of networks in NNB
M,K,d, then each function

f ∈ Φ ∈ NNB,ϱ
M,K,d can be encoded with ℓ := C · M · (K + ⌈log2 M⌉) bits, for a universal constant

C = C(d) ∈ N, i.e., there is an injective map Γ : NNB,ϱ
M,K,d → {0, 1}ℓ, with suitable left inverse

Θ : {0, 1}ℓ → NNB,ϱ
M,K,d. Thus, if to a given ε > 0, there is for each f ∈ HFβ,d,B a neural network

Φf,ε ∈ NNB
M,K,d with ∥f − Rϱ(Φf,ε)∥L2 ≤ ε, then the encoder-decoder pair (Eℓ, Dℓ) defined by

Eℓ : HFβ,d,B → {0, 1}ℓ , f (→ Γ (Rϱ(Φf,ε)) ,

Dℓ : {0, 1}ℓ → L2 ([−1/2, 1/2]d) , c (→ Θ(c)

achieves distortion ε, i.e., it satisfies

sup
f∈HFβ,d,B

∥f −Dℓ(Eℓ(f))∥L2 ≤ ε.

From this, we obtain the desired lower bound by showing that each encoder-decoder pair (Eℓ, Dℓ)
for HFβ,d,B which achieves distortion ε necessarily has to satisfy ℓ " ε−2(d−1)/β.

Of course, this last statement is highly nontrivial; it is essentially a lower bound on the description
complexity of the class HFβ,d,B. As we will see, this description complexity—which is expressed using
encoder-decoder pairs—is closely related to the asymptotic behavior of the so-called entropy numbers of
the class HFβ,d,B.

Deriving a lower bound for these entropy numbers from first principles would be quite difficult. But
luckily, we can use a trick to transfer known results from [13] about the entropy numbers of the class
C0,β([−1/2, 1/2]d−1) to bounds on the entropy numbers of the class of horizon functions. This trick for
transferring the entropy bounds from C0,β([−1/2, 1/2]d−1) to the class of horizon functions is explained
by the following lemma.

Lemma B.1. For d ∈ N≥2, and an arbitrary Borel measurable function γ : [−1/2, 1/2]d−1 → R, define

HFγ :

[
−1

2
,
1

2

]d
→ {0, 1}, (x1, x2, . . . , xd) (→ H(x1 + γ(x2, . . . , xd), x2, . . . , xd),

where H = χ[0,∞)×Rd−1 denotes the Heaviside function. Then, we have for arbitrary p ∈ (0,∞) and
arbitrary measurable ψ, γ : [−1/2, 1/2]d−1 → [−1/2, 1/2] the identity

∥HFγ −HFψ∥Lp([− 1
2 ,

1
2 ]

d) = ∥γ − ψ∥
1
p

L1([− 1
2 ,

1
2 ]

d−1)
.

If ψ, γ : [−1/2, 1/2]d−1 → R are measurable, we still have ∥HFγ−HFψ∥Lp([−1/2,1/2]d) ≤ ∥γ−ψ∥1/pL1([−1/2,1/2]d−1).

Proof. For x = (x1, . . . , xd) ∈ Rd, we write x̂ := (x2, . . . , xd). Then, we have the following equivalence:

HFγ(x) = 1 ⇐⇒ x1 + γ(x̂) ≥ 0.

Thus, |HFγ −HFψ | is {0, 1}-valued with

|HFγ(x)− HFψ(x)| = 1

⇐⇒ [x1 + γ(x̂) ≥ 0 and x1 + ψ(x̂) < 0] or [x1 + γ(x̂) < 0 and x1 + ψ(x̂) ≥ 0]

⇐⇒ x1 ∈ [−γ(x̂),−ψ(x̂)) or x1 ∈ [−ψ(x̂),−γ(x̂)).

But since we have [−γ(x̂),−ψ(x̂))∩[−ψ(x̂),−γ(x̂)) ⊂ [−γ(x̂),−γ(x̂)) = ∅, and since γ,ψ only take values
in [−1/2, 1/2], so that [−γ(x̂),−ψ(x̂)) ∪ [−ψ(x̂),−γ(x̂)) ⊂ [−1/2, 1/2], we get with the one-dimensional
Lebesgue measure µ for each x̂ ∈ [−1/2, 1/2]d−1 that

µ({x1 ∈ [−1/2, 1/2] : |HFγ(x1, x̂)−HFψ(x1, x̂)| = 1})
= µ([−γ(x̂),−ψ(x̂))) + µ([−ψ(x̂),−γ(x̂))) (B.1)

= max{0, γ(x̂)− ψ(x̂)}+max{0,ψ(x̂)− γ(x̂)}
= |γ(x̂)− ψ(x̂)|.
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Since |HFγ −HFψ | is {0, 1}-valued, this implies by Fubini’s theorem

∥HFγ −HFψ∥pLp([− 1
2 ,

1
2 ]

d)
=

∫

[− 1
2 ,

1
2 ]

d−1

∫ 1
2

− 1
2

|HFγ(x1, x̂)−HFψ(x1, x̂)|p dx1 dx̂

=

∫

[− 1
2 ,

1
2 ]

d−1

µ

({
x1 ∈ [−1

2
,
1

2
] : |HFγ(x1, x̂)−HFψ(x1, x̂)| = 1

})
dx̂

=

∫

[− 1
2 ,

1
2 ]

d−1

|γ(x̂)− ψ(x̂)| dx̂ = ∥γ − ψ∥L1([− 1
2 ,

1
2 ]

d−1), (B.2)

as claimed.
If we have ψ, γ : [−1/2, 1/2]d−1 → R instead of ψ, γ : [−1/2, 1/2]d−1 → [−1/2, 1/2], then the equality

in (B.1)—and thus also the one in (B.2)—need to be replaced by “≤”, but the remainder of the proof
remains valid.

Our next goal (see Lemma B.3) is to show that an ℓ-bit encoder-decoder pair (Eℓ, Dℓ) which achieves
distortion ε over the class HFβ,d,B needs to satisfy ℓ " ε−2(d−1)/β. Before we prove this, let us fix some
notation and terminology:

Definition B.2. Let Ω ⊂ Rd be measurable, and let C ⊂ L2(Ω) be an arbitrary function class. For each
ℓ ∈ N, we denote by

E
ℓ := {E : C → {0, 1}ℓ}

the set of binary encoders mapping elements of C to bit-strings of length ℓ, and we let

D
ℓ := {D : {0, 1}ℓ → L2(Ω)}

be the set of binary decoders mapping bit-strings of length ℓ to elements of L2(Ω).
An encoder-decoder pair (Eℓ, Dℓ) ∈ Eℓ×Dℓ is said to achieve distortion ε > 0 over the function class

C, if

sup
f∈C

∥Dℓ(Eℓ(f))− f∥L2(Ω) ≤ ε.

Finally, for ε > 0 the minimax code length L(ε, C) is

L(ε, C) := min

{

ℓ ∈ N : ∃(Eℓ, Dℓ) ∈ E
ℓ ×D

ℓ : sup
f∈C

∥Dℓ(Eℓ(f))− f∥L2(Ω) ≤ ε

}

,

with the interpretation L(ε, C) = ∞ if supf∈C ∥Dℓ(Eℓ(f))− f∥L2(Ω) > ε for all (Eℓ, Dℓ) ∈ Eℓ ×Dℓ and
arbitrary ℓ ∈ N.

Now that we have fixed the terminology, we derive a lower bound on the asymptotic behavior of the
minimax code length for the class HFβ,d,B of horizon functions, by using Lemma B.1 to transfer results
about the behavior of the entropy numbers of C0,β([0, 1]d−1) to the class HFβ,d,B. We remark that this
result is essentially folklore; see for example [12, 11] for related, but less detailed proofs; in fact, our
proof is based on those two papers.

Lemma B.3. Let d ∈ N≥2, and β, B > 0 be arbitrary. Then there are constants C = C (d,β, B) > 0
and ε0 = ε0(d,β, B) > 0, such that for each ε ∈ (0, ε0), the minimax code length L (ε,HFβ,d,B) of the
class HFβ,d,B of horizon functions satisfies

L (ε,HFβ,d,B) ≥ C · ε−
2(d−1)

β .

Proof. Step 1: We prove that there are constants C1 = C1 (d,β, B) > 0 and ε1 = ε1(d,β, B) > 0 such
that for each ε ∈ (0, ε1), there is some N ≥ exp

(
C1 · ε−(d−1)/β

)
, and functions f1, . . . , fN ∈ Fβ,d−1,B

satisfying ∥fi − fℓ∥L1 ≥ ε for i ̸= ℓ.
To show this, we need some preparation: First, let us write β = n+ σ with n ∈ N0 and σ ∈ (0, 1]. It

is easy to see from Lemma D.1 (by translating everything from [0, 1]d−1 to [−1/2, 1/2]d−1) that there is a
constant C2 = C2 (d,β) > 0 such that each u ∈ Cn

(
[−1/2, 1/2]d−1

)
satisfies

∥u∥C0,β ≤ C2 ·
(
∥u∥sup + max

|α|=n
Lipσ (∂

αu)

)
. (B.3)
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Let C3 := B/ (1 + 2C2), and set

F d−1
β (C3) :=

{
u ∈ Cn

(
[−1/2, 1/2]d−1

)
: ∥u∥sup ≤ C3 and max

|α|=n
Lipσ (∂

αu) ≤ C3

}
,

as in [13]. Actually, in [13], the unit cube [0, 1]d−1 is used instead of [−1/2, 1/2]d−1, but it is easy to see
(by translation) that this makes no difference for what follows. Precisely, we want to use [13, Theorem 3],
which ensures existence of a large number of functions f1, . . . , fN ∈ F d−1

β (C3) with ∥fi − fℓ∥L1 ≥ ε for
i ̸= ℓ. To see that this indeed follows from [13, Theorem 3], we recall a few notions from [13, Page 1086]:
For a subset U ⊂ X of a metric space (X, d), we say that U is ε-distinguishable if d (x, y) ≥ ε for all
x, y ∈ U with x ̸= y. Next, for ∅ ̸= A ⊂ X , we define Mε (A) := max {|U | : U ⊂ A is ε-distinguishable},
and we define the capacity of A as† Cε (A) = lnMε (A). Additionally, there is also the notion of the
(metric) entropy Hε (A) of A, the precise definition of which is immaterial for us; the only property
of the entropy that we will need is that Cε (A) ≥ Hε (A).

Finally, [13, Theorem 3] shows that if we consider A = F d−1
β (C3) as a subset of the metric space

X = L1 ([−1/2, 1/2]d−1), then the entropy of F d−1
β (C3) satisfies Hε (F

d−1
β (C3))≥C1 · ε−(d−1)/β for ε ∈

(0, ε1) and certain constants C1 = C1 (d,β, C3) = C1 (d,β, B) > 0 and ε1 = ε1(d,β, C3) = ε1(d,β, B) > 0.
Because of lnMε (A) = Cε (A) ≥ Hε (A), and by definition of Mε (A), this implies that there is some

N ≥ exp
(
C1 · ε−(d−1)/β

)
and certain functions f1, . . . , fN ∈ F d−1

β (C3) with ∥fi − fℓ∥L1 ≥ ε for i ̸= ℓ.

To complete the proof of Step 1, we observe as a consequence of Equation (B.3) that each fi ∈ F d−1
β (C3)

satisfies fi ∈ Cn([−1/2, 1/2]d−1), with

∥fi∥C0,β ≤ C2 ·
(
∥fi∥sup + max

|α|=n
Lipσ(∂

αfi)

)
≤ C2 · 2C3 ≤ B,

i.e., fi ∈ Fβ,d−1,B.

Step 2: For simplicity, let B0 := min {1/2, B}. Furthermore, for x ∈ [−1/2, 1/2]d, let us write x =

(x1, x̂), with x1 ∈ [−1/2, 1/2] and x̂ ∈ [−1/2, 1/2]d−1. Finally, recall from Lemma B.1 that to every
measurable function γ : [−1/2, 1/2]d−1 → R, we associate the function

HFγ : [−1/2, 1/2]d → {0, 1} , (x1, x̂) (→ H (x1 + γ (x̂) , x̂) .

Now, each γ ∈ Fβ,d−1,B0 satisfies ∥γ∥L∞ ≤ ∥γ∥C0,β ≤ B0 ≤ 1/2, and thus γ : [−1/2, 1/2]d−1 → [−1/2, 1/2].
Therefore, Lemma B.1 shows

∥HFγ −HFψ∥L2([−1/2,1/2]d) ≥ ∥γ − ψ∥
1
2

L1([−1/2,1/2]d−1) for all γ,ψ ∈ Fβ,d−1,B0. (B.4)

Finally, we remark that directly from the definition, we have HFγ ∈ HFβ,d,B0 ⊂ HFβ,d,B for all
γ ∈ Fβ,d−1,B0.

Step 3: In this step, we actually prove the claim: Step 1 (applied with B0 = min {1/2, B} instead of
B and with 8ε2 instead of ε) yields constants C1 = C1 (d,β, B) > 0 and ε0 = ε0(d,β, B) > 0, such that

for ε ∈ (0, ε0), there is some N ≥ exp
(
C1 ·

(
8ε2
)−(d−1)/β

)
and f1, . . . , fN ∈ Fβ,d−1,B0 ⊂ Fβ,d−1,B with

∥fi − fℓ∥L1 ≥ 8ε2 for i ̸= ℓ. With this constant C1, we will show

L (ε,HFβ,d,B) ≥
C1

8(d−1)/β
· ε−

2(d−1)
β , for all ε ∈ (0, ε0),

which clearly implies the claim.
For the proof, let Eℓ : HFβ,d,B → {0, 1}ℓ and Dℓ : {0, 1}ℓ → L2 ([−1/2, 1/2]d) be any encoder-decoder

pair which achieves distortion ε ∈ (0, ε0) over the class HFβ,d,B. We need to show

ℓ ≥ C1

8(d−1)/β
· ε−

2(d−1)
β .

Assume towards a contradiction that this fails. Thus, | {0, 1}ℓ | = 2ℓ ≤ eℓ < exp
(
C1 ·

(
8ε2
)−(d−1)/β

)
.

By the pigeonhole principle, with f1, . . . , fN as above, this ensures existence of i, j ∈ {1, . . . , N} with

†We remark that some authors use a logarithm with a different basis than the natural logarithm. For us this does not
matter, since we will obtain a bound Cε (A) ≥ C · ε−(d−1)/β , so that a different choice of basis just leads to a different
constant C.
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i ̸= j, but with Eℓ (HFfi) = Eℓ
(
HFfj

)
. But by Step 2 (Equation (B.4)), this entails

2
√
2ε =

√
8ε2 ≤

√
∥fi − fj∥L1 ≤

∥∥HFfi −HFfj

∥∥
L2

≤
∥∥HFfi −Dℓ

(
Eℓ (HFfi)

)∥∥
L2+

∥∥Dℓ
(
Eℓ (HFfi)

)
−Dℓ

(
Eℓ
(
HFfj

))∥∥
L2+

∥∥Dℓ
(
Eℓ
(
HFfj

))
−HFfj

∥∥
L2

≤ ε+ 0 + ε = 2ε,

a contradiction. Here, we used in the last step that Eℓ (HFfi) = Eℓ
(
HFfj

)
, and that the pair

(
Eℓ, Dℓ

)

achieves distortion ε over HFβ,d,B ⊃ {HFf1 , . . . ,HFfN }. This contradiction completes the proof.

Now that we have a lower bound on the minimax code length of the class of horizon functions, the
next step of the program that was outlined at the beginning of this subsection is to show that if each
horizon function f ∈ HFβ,d,B can be approximated with error ≤ ε by a neural network of bounded
complexity, then this yields an encoder-decoder pair for the class HFβ,d,B of a certain (small) bit-length
ℓ. To main idea for showing this is to encode the approximating neural networks as bit-strings. Our next
lemma shows that this is possible.

Lemma B.4. Let d ∈ N, and let B be an encoding scheme for real numbers. For M,K ∈ N, let NNB
M,K,d

be as in Definition 4.1. Let ϱ : R → R with ϱ(0) = 0, and define

NNB,ϱ
M,K,d := {Rϱ(Φ) : Φ ∈ NNB

M,K,d}.

There is a universal constant C = C(d) ∈ N, such that for arbitrary M,K ∈ N, there is an injective
map ΓB,ϱ

M,K,d : NNB,ϱ
M,K,d → {0, 1}CM(K+⌈log2 M⌉).

Proof. The proof is similar to that of [6, Theorem 2.7]. However, since we define networks slightly
differently in this work, we repeat the main points of the proof with some simplifications.

In Lemma E.1, it is shown that for each f ∈ NNB,ϱ
M,K,d, there is a neural network Φf ∈ NNB

M,K,d

satisfying f = Rϱ(Φf ) and furthermore N(Φf ) ≤ M(Φf ) + d+ 1.
Therefore, it suffices to show for

NN ∗
M,K := {Φ ∈ NNB

M,K,d : N(Φ) ≤ M(Φ) + d+ 1}

and ℓ := C ·M · (K + ⌈log2 M⌉) (with a suitable constant C = C(d) ∈ N) that there is an injective map
ΘB

M,K : NN ∗
M,K → {0, 1}ℓ, since then the map ΓB,ϱ

M,K : NNB,ϱ
M,K,d → {0, 1}ℓ, f (→ ΘB

M,K(Φf ) is easily
seen to be injective.

To prove existence of ΘB
M,K , we show that each Φ ∈ NN ∗

M,K can be encoded (in a uniquely decodable
way) with ℓ bits. To show this, we first observe that each such Φ satisfies for L := L(Φ) the estimates

L =
L∑

ℓ=1

1 ≤
L∑

ℓ=1

Nℓ = N(Φ)−d ≤ M(Φ)+1 ≤ M+1, and N(Φ) ≤ M(Φ)+d+1 ≤ M+d+1 ≤ 3d·M =: T.

Next, in the notation of Definition 2.1, we can write Φ = ((A1, b1), . . . , (AL, bL)), so that it suffices
to encode (in a uniquely decodable way) the integer L ∈ N, the matrices A1, . . . , AL and the vectors
b1, . . . , bL using a bit-string of length ℓ. To show this, let B = (Bn)n∈N.

Now, if A ∈ Rn1×n2 with 1 ≤ n1, n2 ≤ T and ∥A∥ℓ0 = m and with Ai,j ∈ BK({0, 1}K) if Ai,j ̸= 0,
then one can store A by storing the values n1, n2, the value 0 ≤ m ≤ T 2, the position of each of the m
non-zero entries of A, and the bit-string of length K that is associated to each non-zero weight (by BK).
Since one can always zero-pad the obtained bit-string to a larger length, and since we have

log2(T ) = log2(3d) + log2(M) ≤ C1 + ⌈log2 M⌉

and log2(1 + T 2) ≤ log2(2T
2) = 1+ 2 log2(T ) ≤ 1+ 2C1 +2⌈log2 M⌉ for a suitable C1 = C1(d) ∈ N, this

can be done with

⌈log2 T ⌉+ ⌈log2 T ⌉+ ⌈log2(T 2 + 1)⌉+m · (⌈log2 T ⌉+ ⌈log2 T ⌉+K)

≤ 2C1 + 2⌈log2 M⌉+ 1 + 2C1 + 2⌈log2 M⌉+m (K + 2C1 + 2⌈log2 M⌉)
≤ 1 + 4C1 + 4⌈log2 M⌉+ 2(1 + C1) ·m · (K + ⌈log2 M⌉)
≤ C2 + 4⌈log2 M⌉+ C2 ·m · (K + ⌈log2 M⌉)

bits, for a suitable constant C2 = C2(d) ∈ N.

28



Likewise, but easier, if b ∈ Rn with 1 ≤ n ≤ T , with ∥b∥ℓ0 = m and with bi ∈ BK({0, 1}K) if bi ̸= 0,
then one can store b by storing the values 1 ≤ n ≤ T and 0 ≤ m ≤ n ≤ T , and the position of each
non-zero entry, as well as the bit-string of length K associated to each non-zero entry (by BK). Because
of log2(T + 1) ≤ log2(2T ) ≤ 1 + log2(T ), this can be done with

⌈log2 T ⌉+ ⌈log2(T + 1)⌉+m · (K + ⌈log2 T ⌉) ≤ 1 + 2C1 + 2⌈log2 M⌉+m · (K + C1 + ⌈log2 M⌉)
≤ C2 + 4⌈log2 M⌉+ C2 ·m · (K + ⌈log2 M⌉)

bits, after possibly enlarging the constant C2 = C2(d) ∈ N from above.
Note that when decoding a given bit string, the values M,K, d—and thus also of T—are known.

Overall, our encoding scheme for encoding networks Φ ∈ NN ∗
M,K now works as follows:

Step 1: We store the number 1 ≤ L ≤ M + 1 in a bit-string of length ⌈log2(M + 1)⌉.
Step 2: We encode each Aℓ using a bit string of length C2+4⌈log2 M⌉+C2 ·∥Aℓ∥ℓ0 · (K+ ⌈log2 M⌉)

and each bℓ using a bit string of length C2 + 4⌈log2 M⌉ + C2 · ∥bℓ∥ℓ0 · (K + ⌈log2 M⌉). As seen above,
this can indeed be done in such a way that one can uniquely reconstruct A1, . . . , AL and b1, . . . , bL from
these bit-strings, once one knows M,K, d (which are given) and L, which is given by the bit string from
Step 1.

Overall, this encodes the network Φ = ((A1, b1), . . . , (AL, bL)) in a uniquely decodable way using a
bit-string of length

⌈log2(M + 1)⌉+ 2 ·
L∑

ℓ=1

(C2 + 4⌈log2 M⌉) + C2 · (K + ⌈log2 M⌉)
L∑

ℓ=1

(∥Aℓ∥ℓ0 + ∥bℓ∥ℓ0)

≤ 1 + ⌈log2 M⌉+ 2L · (C2 + 4⌈log2 M⌉) + C2 ·M · (K + ⌈log2 M⌉)
≤ K + ⌈log2 M⌉+ 4max{4, C2} ·M · (1 + ⌈log2 M⌉) + C2 ·M · (K + ⌈log2 M⌉)
≤ (1 + C2 + 4max{4, C2}) ·M · (K + ⌈log2 M⌉).

Here, we used that L ≤ M + 1 ≤ 2M and that M,K ≥ 1. With C := 1 + C2 + 4max{4, C2}, we have
thus proved the claim.

Now, since we have a lower bound on the minimax code-length of the class of horizon functions and
since we know how to encode neural networks of limited complexity, we can now prove our optimality
result in the uniform setting, by making precise the arguments that we sketched at the beginning of the
present subsection.

Proof of Theorem 4.2. We will use the notationNNB
M,K,d from Definition 4.1 and the notationNNB,ϱ

M,K,d
from Lemma B.4. Recall from that lemma that there is an absolute constant C1 = C1(d) ∈ N, such that
for arbitrary M,K ∈ N, there is an injective map

Γ : NNB,ϱ
M,K,d → {0, 1}C1·M·(K+⌈log2 M⌉) .

Furthermore, Lemma B.3 yields constants C2 = C2(d,β, B) > 0 and 1/2 > ε0 = ε0(d,β, B) > 0 such that
the minimax code length of HFβ,d,B satisfies L(ε,HFβ,d,B) ≥ C2 · ε−2(d−1)/β for all ε ∈ (0, ε0). Define

C := min

{
1, C2

/ [
2C1 ·

(
2 +

2d

β
+ C0

)]}
> 0,

fix some ε ∈ (0, ε0), and define

K0 :=

⌈
C0 · log2

(
1

ε

)⌉
and M0 :=

⌊
C · ε−2(d−1)/β

/
log2

(
1

ε

)⌋
.

To prove the theorem, it suffices to show that there is fε ∈ HFβ,d,B such that for every Φ ∈ NNB
M,K0,d

(for arbitrary M ∈ N) with ∥fε − Rϱ(Φ)∥L2 ≤ ε, it already follows that M > M0.
Assume towards a contradiction that this fails; thus, for every f ∈ HFβ,d,B, there is Φf ∈ NNB

M,K0,d

with ∥f − Rϱ(Φf )∥L2 ≤ ε, but such that M ≤ M0. In particular, Φf ∈ NNB
M,K0,d ⊂ NNB

M0,K0,d, so

that Rϱ(Φf ) ∈ NNB,ϱ
M0,K0,d

.
Let

ℓ := C1 ·M0 · (K0 + ⌈log2 M0⌉),
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and recall from above (or from Lemma B.4) that there is an injection Γ : NNB,ϱ
M0,K0,d

→ {0, 1}ℓ. Therefore,
there is a left inverse Λ : {0, 1}ℓ → NNB,ϱ

M0,K0,d
for Γ. Using these, we can now define an encoder-decoder

pair for HFβ,d,B, as follows:

Eℓ : HFβ,d,B → {0, 1}ℓ , f (→ Γ (Rϱ(Φf )) ,

Dℓ : {0, 1}ℓ → L2 ([−1/2, 1/2]d) , c (→ [Λ (c)] |[−1/2,1/2]d .

With this definition, we have

Dℓ(Eℓ(f)) = [Λ(Γ(Rϱ(Φf )))]|[−1/2,1/2]d = Rϱ(Φf )|[−1/2,1/2]d ,

and thus ∥f − Dℓ(Eℓ(f))∥L2 ≤ ε for all f ∈ HFβ,d,B. By definition of the minimax code length
L(ε,HFβ,d,B), this implies

ℓ ≥ L(ε,HFβ,d,B) ≥ C2 · ε−2(d−1)/β. (B.5)

In the remainder of the proof, we use elementary estimates to derive a contradiction to the preceding
estimate for ℓ. First, recall ε < 1/2, so that log2(1/ε) ≥ 1, and hence M0 ≤ C · ε−2(d−1)/β ≤ ε−2(d−1)/β,

which implies log2 M0 ≤ 2(d−1)
β · log2(1/ε) ≤ 2d

β · log2(1/ε). Therefore, we get

K0 + ⌈log2 M0⌉ ≤ 1 + C0 · log2
(
1

ε

)
+

⌈
2d

β
· log2

(
1

ε

)⌉
≤
(
2 + C0 +

2d

β

)
· log2

(
1

ε

)
,

where the last step used again that log2(1/ε) ≥ 1. All in all, recalling the definition of M0 and of C, we
see

ℓ = C1 ·M0 · (K0 + ⌈log2 M0⌉) ≤ C1 ·M0 ·
(
2 +

2d

β
+ C0

)
· log2

(
1

ε

)
≤ C2

2
· ε−2(d−1)/β,

which yields the desired contradiction, once we recall Equation (B.5).

B.2 Lower bounds for the setting of instance optimality

In the previous section, we showed (up to log factors) that MB,ϱ,C0
ε (HFβ,d,B) " ε−2(d−1)/β. Here,

the quantity M = MB,ϱ,C0
ε (HFβ,d,B) is the minimal M ∈ N such that every f ∈ HFβ,d,B can be

approximated up to an L2-error of at most ε using a neural network with M non-zero weights (and such
that all weights can be encoded with at most ⌈C0 · log2(1/ε)⌉ bits, using the encoding scheme B).

In this section, we want to show that a similar lower bound holds if one is interested in approxima-
tion of a single (judiciously chosen) function f ∈ HFβ,d,B, not just if one is interested in a uniform
approximation over the whole class of horizon functions.

The proof idea is somewhat similar to the one that was used for the lower bounds in the uniform
setting: We first obtain a lower bound regarding encoder-decoder pairs which achieve a small L1-error
over the class Fβ,d−1,B, and then we use the map γ (→ HFγ to transfer the result to the class of horizon
functions.

Thus, our first step is the following lemma which uses Baire’s category theorem to “upgrade” the
lower bound regarding encoder-decoder pairs with uniform error control to a lower bound concerning
encoder-decoder pairs with non-uniform error control. This is done for the class Fβ,d−1,B.

Lemma B.5. Let d ∈ N and β, B > 0 be arbitrary, and write β = n + σ with n ∈ N0 and σ ∈ (0, 1].
Define

X := {u ∈ Cn([−1/2, 1/2]d) : ∥u∥C0,β ≤ B < ∞}.

Let φ : N → (0,∞) be arbitrary with limℓ→∞ ℓβ/d · φ(ℓ) = 0. Finally, let I ⊂ N be infinite, and for each
ℓ ∈ I, let Eℓ : X → {0, 1}ℓ and Dℓ : {0, 1}ℓ → L1([−1/2, 1/2]d) be arbitrary maps.

Then there is some u ∈ X, such that the sequence (∥u−Dℓ(Eℓ(u))∥L1

/
φ(ℓ))ℓ∈I is unbounded.

Proof. We assume towards a contradiction that the claim is false. This means

∀u ∈ X :
(
∥u−Dℓ(Eℓ(u))∥L1

/
φ(ℓ)

)
ℓ∈I

is a bounded sequence. (B.6)

In the following, we consider the Banach space

C0,β([−1/2, 1/2]d) := {u ∈ Cn([−1/2, 1/2]d) : ∥u∥C0,β < ∞},

i.e., all balls Bδ(u) or Bδ(u) for u ∈ C0,β , and all closures M for M ⊂ C0,β are to be understood with
respect to the ∥ · ∥C0,β norm.
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We divide the proof into three steps.
Step 1: For N ∈ N, let us set

GN :=
{
u ∈ X : ∀ℓ ∈ I : ∥u−Dℓ(Eℓ(u))∥L1 ≤ N · φ(ℓ)

}
.

In this step, we show that there is some N ∈ N and certain δ > 0 and u0 ∈ X with

Bδ(u0) ⊂ GN . (B.7)

To see this, first note that Equation (B.6) simply says X =
⋃

N∈N
GN . But X is a closed subspace

of the Banach space C0,β([−1/2, 1/2]d), and thus a complete metric space. Therefore, the Baire category
theorem (see e.g. [19, Theorem 5.9]) shows that at least one of the GN has nonempty interior (with
respect to X). In other words, Baire’s theorem ensures existence of some N ∈ N and of δ0 ∈ (0, 1) and
v0 ∈ X such that

X ∩Bδ0(v0) ⊂ GN ,

where the ball Bδ0(v0) and the closure GN are both formed with respect to the norm ∥ · ∥C0,β .
Now, set u0 := (1− δ0/(1 +B)) · v0 and note

∥u0∥C0,β = (1− δ0/(1 +B)) · ∥v0∥C0,β ≤ (1 − δ0/(1 +B)) ·B < B,

as well as ∥u0 − v0∥C0,β = δ0
1+B · ∥v0∥C0,β < δ0. These two properties easily imply that there is some

δ > 0 with Bδ(u0) ⊂ X ∩Bδ0(v0). Because of X ∩Bδ0(v0) ⊂ GN , this establishes Equation (B.7).

Step 2: For brevity, set

Y := Bδ(0) = {u ∈ C0,β([−1/2, 1/2]d) : ∥u∥C0,β ≤ δ} = Fβ,d,δ,

where the notation Fβ,d,δ is as in Equation (3.1). Our goal in this step is for each ℓ ∈ I ⊂ N to construct

modified maps D̃ℓ : {0, 1}ℓ → L1([−1/2, 1/2]d) and Ẽℓ : Y → {0, 1}ℓ which satisfy

∥u− D̃ℓ(Ẽℓ(u))∥L1 ≤ N · φ(ℓ) for all u ∈ Y and all ℓ ∈ I. (B.8)

To this end, define

D̃ℓ : {0, 1}ℓ → L1([−1/2, 1/2]d), c (→ Dℓ(c)− u0.

Now, since {0, 1}ℓ is finite, there is for each u ∈ Y a certain (not necessarily unique) coefficient sequence
cu ∈ {0, 1}ℓ with

∥u− D̃ℓ(cu)∥L1 = min
c∈{0,1}ℓ

∥u− D̃ℓ(c)∥L1 .

With this choice of cu, we define Ẽℓ : Y → {0, 1}ℓ, u (→ cu. To prove Equation (B.8) recall for u ∈ Y from
Step 1 that u+u0 ∈ Bδ(u0) ⊂ GN . Thus, there is a sequence (uk)k∈N in GN with ∥(u+u0)−uk∥C0,β → 0
as k → ∞. In particular, we get

∥u− D̃ℓ(Ẽℓ(u))∥L1 = min
c∈{0,1}ℓ

∥u− D̃ℓ(c)∥L1 ≤ ∥u− D̃ℓ(Eℓ(uk))∥L1

= ∥(u+ u0)−Dℓ(Eℓ(uk))∥L1

≤ ∥(u+ u0)− uk∥L1 + ∥uk −Dℓ(Eℓ(uk))∥L1

(since uk∈GN and ∥·∥L1([−1/2,1/2]d)≤∥·∥C0,β ) ≤ ∥(u+ u0)− uk∥C0,β +N · φ(ℓ) −−−−→
k→∞

N · φ(ℓ),

which is precisely what was claimed in (B.8).

Step 3: In this step, we complete the proof. To this end, recall from Step 1 of the proof of Lemma B.3
that there are constants C = C(β, d, δ) > 0 and ε0 = ε0(β, d, δ) > 0 such that for every ε ∈ (0, ε0), there
is some N ≥ exp(C · ε−d/β) and certain functions u1, . . . , uN ∈ Y = Fβ,d,δ satisfying ∥ui − uj∥L1 ≥ ε for
i ̸= j.

We now apply this for every fixed, sufficiently large ℓ ∈ I with the choice ε = (C−1 ·ℓ)−β/d. Note that
we indeed have ε ∈ (0, ε0), once ℓ is large enough, which we always assume in the following; since I ⊂ N is
infinite, there exist arbitrarily large ℓ ∈ I. As just seen, there is some N ≥ exp(C · [(C−1 · ℓ)−β/d]−d/β) =
eℓ, and certain functions u1, . . . , uN ∈ Y with ∥ui − uj∥L1 ≥ ε = (C−1 · ℓ)−β/d for i ̸= j.
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Because of N ≥ eℓ > 2ℓ = |{0, 1}ℓ|, the pigeonhole principle shows that there are i, j ∈ {1, . . . , N}
with i ̸= j, but such that Ẽℓ(ui) = Ẽℓ(uj). In view of Equation (B.8), this implies

(C−1 · ℓ)−β/d ≤ ∥ui − uj∥L1

≤ ∥ui − D̃ℓ(Ẽℓ(ui))∥L1 + ∥D̃ℓ(Ẽℓ(ui))− D̃ℓ(Ẽℓ(uj))∥L1 + ∥D̃ℓ(Ẽℓ(uj))− uj∥L1

≤ N · φ(ℓ) + 0 +N · φ(ℓ).

By rearranging, and by our assumption on φ, this implies

Cβ/d

2N
≤ ℓβ/d · φ(ℓ) −−−−−−→

ℓ∈I,ℓ→∞
0,

which is the desired contradiction, since the left-hand side is positive and independent of ℓ. Note that
we again used that I is infinite to ensure that the limit ℓ ∈ I, ℓ→ ∞ makes sense.

Our next result transfers the preceding lemma from the set Fβ,d−1,B of smooth functions to the class
HFβ,d,B of horizon functions.

Lemma B.6. Let d ∈ N≥2 and β, B > 0 be arbitrary. Furthermore, let ϑ : N → (0,∞) be arbitrary with
limℓ→∞ ℓβ/(2(d−1)) ·ϑ(ℓ) = 0. Finally, let I ⊂ N be infinite, and for each ℓ ∈ I let Eℓ : HFβ,d,B → {0, 1}ℓ
and Dℓ : {0, 1}ℓ → L2([−1/2, 1/2]d) be arbitrary.

Then there is some f ∈ HFβ,d,B such that the sequence

(
∥f −Dℓ(Eℓ(f))∥L2

/
ϑ(ℓ)

)
ℓ∈I

is unbounded.

Proof. Write β = n+ σ with n ∈ N0 and σ ∈ (0, 1].
Step 1: We show for arbitrary C > 0 that the set

KC := {f ∈ Cn([−1/2, 1/2]d−1) : ∥f∥C0,β ≤ C}

is a compact subset of L1([−1/2, 1/2]d−1). To see this, let (fk)k∈N be an arbitrary sequence in KC . Then,
for each α ∈ N

d−1
0 with |α| < n, we have

Lip1(∂
αfk) ≤ ∥∇(∂αfk)∥L∞ ≤

d−1∑

j=1

∥∂α+ejfk∥L∞ ≤ (d− 1) · ∥fk∥C0,β ≤ d · C,

and for α ∈ N
d−1
0 with |α| = n, we have Lipσ(∂

αfk) ≤ ∥fk∥C0,β ≤ C, where we emphasize that σ > 0.
Furthermore, for |α| ≤ n arbitrary, we have ∥∂αfk∥L∞ ≤ ∥fk∥C0,β ≤ C.

We have thus shown that each of the sequences (∂αfk)k∈N, for |α| ≤ n, is uniformly bounded and
equicontinuous. By the Arzela-Ascoli theorem (see e.g. [19, Theorem 4.44]), there is thus a common subse-
quence (fkt)t∈N such that (∂αfkt)t∈N converges uniformly to a continuous function gα ∈ C([−1/2, 1/2]d−1)
for each α ∈ N

d−1
0 with |α| ≤ n.

It is now a standard result (see for example [30, Theorem 9.1 in XIII, §9]) that f := g0 satisfies
f ∈ Cn([−1/2, 1/2]d−1) with ∂αf = gα for α ∈ N

d−1
0 with |α| ≤ n. In particular, fkt → g0 = f uniformly,

and thus also in L1([−1/2, 1/2]d−1). Thus, to prove compactness of KC ⊂ L1([−1/2, 1/2]d−1), it suffices to
show f ∈ KC . But for α ∈ N

d−1
0 with |α| ≤ n, we have ∥∂αf∥L∞ = ∥gα∥L∞ = limt→∞ ∥∂αfkt∥L∞ ≤ C.

Finally, for |α| = n, and arbitrary x, y ∈ [−1/2, 1/2]d−1, we have

|∂αf(x)− ∂αf(y)| = |gα(x) − gα(y)| = lim
t→∞

|∂αfkt(x)− ∂αfkt(y)|

≤ lim sup
t→∞

Lipσ(∂
αfkt) · |x− y|σ ≤ sup

k∈N

∥fk∥C0,β · |x− y|σ ≤ C · |x− y|σ.

Therefore, Lipσ(∂
αf) ≤ C < ∞. All in all, we have thus verified ∥f∥C0,β ≤ C, i.e, f ∈ KC .

Step 2: We observe with Lemma B.1 that

Λ : L1([−1/2, 1/2]d−1) → L2([−1/2, 1/2]d), γ (→ HFγ

with HFγ as in Lemma B.1 is continuous.
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Step 3: Let B0 := min{B, 1/2}. In this step, we construct modified encoding-decoding pairs (Ẽℓ, D̃ℓ)

with Ẽℓ : Fβ,d−1,B0 → {0, 1}ℓ and D̃ℓ : {0, 1}ℓ → L1([−1/2, 1/2]d−1) such that

∥γ−D̃ℓ(Ẽℓ(γ))∥L1([−1/2,1/2]d−1) ≤ 4·∥HFγ−Dℓ(Eℓ(HFγ))∥2L2([−1/2,1/2]d) for all γ ∈ Fβ,d−1,B0 . (B.9)

For the construction, first note from Steps 1 and 2 that there is for each g ∈ L2([−1/2, 1/2]d) some (not
necessarily unique) γg ∈ KB0 with ∥g − HFγg∥L2 = minγ∈KB0

∥g − HFγ∥L2 . Now, for each c ∈ {0, 1}ℓ,
let θc := γDℓ(c) ∈ KB0 ⊂ L1([−1/2, 1/2]d−1), so that

∥Dℓ(c)−HFθc∥L2 = min
γ∈KB0

∥Dℓ(c)−HFγ∥L2 for all c ∈ {0, 1}ℓ.

With this choice, let

D̃ℓ : {0, 1}ℓ → L1([−1/2, 1/2]d−1), c (→ θc .

Now, since {0, 1}ℓ is finite, there is for each γ ∈ Fβ,d−1,B0 some (not necessarily unique) cγ ∈ {0, 1}ℓ

with ∥γ − D̃ℓ(cγ)∥L1 = minc∈{0,1}ℓ ∥γ − D̃ℓ(c)∥L1 . With this choice, set

Ẽℓ : Fβ,d−1,B0 → {0, 1}ℓ, γ (→ cγ .

Now that we have constructed Ẽℓ, D̃ℓ, it remains to establish Equation (B.9). To this end, recall from
Lemma B.1 that all γ,ψ ∈ L1([−1/2, 1/2]d−1) with ∥γ∥sup, ∥ψ∥sup ≤ 1/2 satisfy ∥HFγ−HFψ∥2L2 = ∥γ−ψ∥L1.

Therefore, we get for arbitrary γ ∈ Fβ,d−1,B0 with c(0) := Eℓ(HFγ) that

∥γ − D̃ℓ(Ẽℓ(γ))∥L1 = min
c∈{0,1}ℓ

∥γ − D̃ℓ(c)∥L1 ≤ ∥γ − D̃ℓ(c(0))∥L1 = ∥γ − θc(0)∥L1

(
∥γ∥sup,∥θc(0)∥sup≤B0≤ 1

2
since γ∈Fβ,d−1,B0 and θ

c(0)
∈KB0

)
= ∥HFγ −HFθ

c(0)
∥2L2

≤
(
∥HFγ −Dℓ(c(0))∥L2+∥Dℓ(c(0))−HFθ

c(0)
∥L2

)2

(choice of θ
c(0)

) =

(
∥HFγ −Dℓ(c(0))∥L2+ min

ψ∈KB0

∥Dℓ(c(0))−HFψ∥L2

)2

(since γ∈Fβ,d−1,B0=KB0) ≤
(
2 · ∥HFγ −Dℓ(c(0))∥L2

)2
= 4 · ∥HFγ −Dℓ(Eℓ(HFγ))∥2L2 .

This completes the proof of Equation (B.9).

Step 4: In this step, we complete the proof. To this end, let us assume towards a contradiction that
the claim fails. Thus, for every f ∈ HFβ,d,B, we have

∥f −Dℓ(Eℓ(f))∥L2 ≤ Cf · ϑ(ℓ) for all ℓ ∈ I,

for a finite constant Cf > 0.
By Step 3, this implies for φ := ϑ2 and arbitrary γ ∈ Fβ,d−1,B0 because of HFγ ∈ HFβ,d,B0 ⊂ HFβ,d,B

that

∥γ − D̃ℓ(Ẽℓ(γ))∥L1 ≤ 4 · ∥HFγ −Dℓ(Eℓ(HFγ))∥2L2 ≤ 4 · C2
HFγ

· (ϑ(ℓ))2 = 4 · C2
HFγ

· φ(ℓ) for all ℓ ∈ I.

But by assumption on ϑ, we have limℓ→∞ ℓβ/(d−1) ·φ(ℓ) = limℓ→∞(ℓβ/[2(d−1)] ·ϑ(ℓ))2 = 0, so that Lemma
B.5 yields the desired contradiction.

With the preceding lemma, we have shown that given a sequence of encoder-decoder pairs for the
class of horizon functions, one can always find a single function which is not “too well approximated”
by the sequence. We now use this result to prove the claimed lower bound in the setting of instance
optimality.

Proof of Theorem 4.3. Step 1: For technical reasons, we first need to study for fixed, but arbitrary
ν > 0 the monotonicity of the function

φ : (2,∞) → (0,∞), x (→ xν

log2(x) · log2(log2(x))
.

We claim that there is some x0 = x0(ν) such that φ|[x0,∞) is strictly increasing; since we clearly have
φ(x) → ∞ as x → ∞, we can then choose x0 so that also φ(x0) ≥ 4.
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To show existence of x0, first note from a direct computation that

φ′(x) = xν−1 ·
[
ν · log2(x) · log2(log2(x)) −

log2(log2(x))

ln 2
− (ln 2)−2

]/
[log2(x) · log2(log2(x))]2.

Here, the denominator is positive. Furthermore, the first term in the numerator dominates the other two
terms for x large enough. Therefore, φ′(x) is positive for x large enough. This establishes the claim of
Step 1.

Step 2: In this technical step, we construct quantities Ωε,Kε, ℓε ∈ N for 0 < ε ≤ ε0, for a certain
ε0 ∈ (0, 1/4], and use these quantities to define an infinite set I ⊂ N. The relevance of these constructions
will become apparent in Steps 3 and 4.

Let φ, x0 be as in Step 1, with ν := 2(d−1)/β. By possibly enlarging x0, we can (and will) assume
x0 ≥ 4. Set ε0 := x−1

0 , choose the constant C = C(d) ∈ N as provided by Lemma B.4, and let
C1 = C1(d,β, C0) ∈ N with C1 ≥ C−1

0 · (1 + 2(d−1)/β). Furthermore, set C2 := C · (1 + C1) ∈ N.
Next, for ε ∈ (0, ε0], define

Ωε := ⌈φ(ε−1)⌉ =
⌈
ε−2(d−1)/β

/ [
log2

(
ε−1
)
· log2

(
log2

(
ε−1
))]⌉

∈ N

and Kε := ⌈C0 · log2(1/ε)⌉ ∈ N, and set ℓε := C2 · Ωε ·Kε ∈ N.
First, note because of 0 < ε ≤ ε0 ≤ 1/4 that ε−1 ≥ 4 and hence log2(1/ε) ≥ 2 and log2(log2(1/ε)) ≥ 1,

as well as ε−2(d−1)/β ≥ 1, Hence, Ωε ≤ ⌈ε−2(d−1)/β⌉ ≤ 1 + ε−2(d−1)/β ≤ 2 · ε−2(d−1)/β, which implies

log2(Ωε) ≤ 1 +
2(d− 1)

β
· log2

(
1

ε

)
≤
(
1 +

2(d− 1)

β

)
· log2

(
1

ε

)
≤ C1 · C0 · log2

(
1

ε

)
≤ C1 ·Kε.

Therefore,
C · Ωε · (Kε + ⌈log2 Ωε⌉) ≤ C · (1 + C1) · Ωε ·Kε = ℓε. (B.10)

Our last goal in this step is to show that the map ℓε (→ (Ωε,Kε) is well-defined. To see this, first
recall from Step 1, that if 0 < ε ≤ ε′, then Ωε ≥ Ωε′ . By contraposition, this shows that if Ωε < Ωε′ ,
then ε > ε′ and hence Kε ≤ Kε′ , so that

ℓε = C2 · Ωε ·Kε ≤ C2 · Ωε ·Kε′ < C2 · Ωε′ ·Kε′ = ℓε′ .

Again by contraposition, we have shown that Ωε = Ωε′ if ℓε = ℓε′ . Even more, if ℓε = ℓε′ , we just saw
Ωε = Ωε′ , but this also implies Kε = ℓε/(C2Ωε) = ℓε′/(C2Ωε′) = Kε′ . Hence, if we define I := {ℓε : ε ∈
(0, x0]} ⊂ N, then I is clearly an infinite set, and for ℓ = ℓε ∈ I, it makes sense to write Ωε,Kε, since
these quantities are independent of the precise choice of ε ∈ (0, x0] with ℓ = ℓε.

Step 3: In this step, we define for each ℓ ∈ I a certain encoder-decoder pair (Eℓ, Dℓ). More precisely,
we recall from Lemma B.4 by our choice of C = C(d) in Step 2 and because of Equation (B.10) that for
each ℓ = ℓε ∈ I, there is an injective function Γℓ : NNB,ϱ

Ωε,Kε,d
→ {0, 1}ℓ. Let us fix some left-inverse

Ψℓ : {0, 1}ℓ → NNB,ϱ
Ωε,Kε,d

for Γℓ.

Next, for each ℓ = ℓε ∈ I and each f ∈ HFβ,d,B we can use finiteness of NNB,ϱ
Ωε,Kε,d

(which follows

from the injectivity of Γℓ) to choose a (not necessarily unique) neural network Φf,ℓ ∈ NNB
Ωε,Kε,d which

satisfies
∥f − Rϱ(Φf,ℓ)∥L2 = min

N∈NNB
Ωε,Kε,d

∥f − Rϱ(Φ)∥L2 .

With this choice, we can finally define

Eℓ : HFβ,d,B → {0, 1}ℓ , f (→ Γℓ (Rϱ(Φf,ℓ)) ,

Dℓ : {0, 1}ℓ → L2 ([−1/2, 1/2]d) , c (→ [Ψℓ(c)] |[− 1
2 ,

1
2 ]

d .

Note that this choice implies

∥f −Dℓ(Eℓ(f))∥L2 = min
Φ∈NNB

Ωε,Kε,d

∥f − Rϱ(Φ)∥L2 for all ℓ = ℓε ∈ I and f ∈ HFβ,d,B. (B.11)

Step 4: In Step 5, we will invoke Lemma B.6 with

ϑ : N → (0,∞), ℓ (→ ℓ−β/(2(d−1))
/
[log2(log2(max{4, ℓ}))]β/(2(d−1)).
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As a preparation, in this step, we derive some elementary estimates concerning Ωε,Kε and ℓε, and then
also for ϑ(ℓε).

First, note for ε ∈ (0, ε0] because of ε0 ≤ 1/4 that log2 (1/ε) ≥ 2 ≥ 1, and hence

Kε =

⌈
C0 · log2

(
1

ε

)⌉
≤ 1 + C0 log2

(
1

ε

)
≤ (1 + C0) · log2

(
1

ε

)
.

Next, since φ(ε−1) ≥ φ(ε−1
0 ) = φ(x0) ≥ 4 for ε ∈ (0, ε0], we have Ωε = ⌈φ(ε−1)⌉ ≤ 1 + φ(ε−1) ≤ 2φ(ε−1).

All in all, this yields for a suitable constant C3 = C3(d,β, C0) ∈ N that

ℓε = C2 · Ωε ·Kε ≤ 2 · (1 + C0) · C2 · φ
(
1

ε

)
· log2

(
1

ε

)
= C3 · ε−2(d−1)/β ·

[
log2

(
log2

(
1

ε

))]−1

.

Furthermore, because of log2(log2(1/ε)) ≥ 1, we get for a suitable constant C4 = C4(d,β, C0) ∈ N that

log2(ℓε) ≤ log2(C3 · ε−2(d−1)/β) = log2(C3) +
2(d− 1)

β
· log2

(
1

ε

)
≤ C4 · log2

(
1

ε

)
,

so that log2(log2(ℓε)) ≤ log2(C4) + log2(log2(1/ε)) ≤ C5 · log2(log2(1/ε)) for some C5 = C5(d,β, C0) > 0.
From the preceding estimates, because of ℓε = C2 ·Ωε ·Kε ≥ Ωε ≥ φ(ε−1) ≥ 4, and from the definition

of ϑ, we get a constant C6 = C6(d,β, C0) > 0 with

1

ϑ(ℓε)
= ℓβ/(2(d−1))

ε · [log2(log2(ℓε))]β/(2(d−1))

≤ Cβ/(2(d−1))
3 · ε−1 · [log2(log2 (1/ε))]−β/(2(d−1)) · Cβ/(2(d−1))

5 · [log2(log2 (1/ε))]β/(2(d−1))

= C6 · ε−1.

(B.12)

Step 5: Now, we complete the proof. First, we note

lim
ℓ→∞

ℓβ/(2(d−1))ϑ(ℓ) = lim
ℓ→∞

[log2(log2(max{4, ℓ}))]−β/(2(d−1)) = 0,

as required in Lemma B.6. Hence, using that lemma, we obtain a horizon function f ∈ HFβ,d,B which
satisfies

∞ = sup
ℓε∈I

∥f −Dℓε(Eℓε(f))∥L2

ϑ(ℓε)

(by Equations (B.11) and (B.12)) ≤ C6 · sup
0<ε≤ε0

[
min{∥f − Rϱ(Φ)∥L2 : Φ ∈ NNB

Ωε,Kε,d} · ε
−1
]
.

For brevity, let us set δε := min{∥f − Rϱ(Φ)∥L2 : Φ ∈ NNB
Ωε,Kε,d}. Then the preceding estimate

yields a sequence (εk)k∈N with 0 < εk ≤ ε0 ≤ 1/4 and such that ε−1
k · δεk ≥ 2k for all k ∈ N. In particular,

δεk > 0.
But for 0 < ε ≤ ε′ ≤ ε0, we have Ωε ≥ Ωε′ and Kε ≥ Kε′ , see also Step 2. Therefore, and since we

require the encoding scheme B = (Bℓ)ℓ∈N to be consistent, i.e., to satisfy Range(Bℓ) ⊂ Range(Bℓ+1) for
all ℓ ∈ N, we have NNB

Ωε,Kε,d ⊃ NNB
Ωε′ ,Kε′ ,d

, and thus δε ≤ δε′ . In particular, we get

0 < εk ≤ δεk
2k

≤ δε0
2k

−−−−→
k→∞

0.

We have thus constructed the function f ∈ HFβ,d,B and the sequence (εk)k∈N, so that it remains to
show that these have the desired properties. To see this, pick any k ∈ N, and let M ∈ N such that there
exists Φ ∈ NNB

M,⌈C0 log2(1/εk)⌉,d = NNB
M,Kεk

,d with ∥f − Rϱ(Φ)∥L2 ≤ εk. Then we get

∥f − Rϱ(Φ)∥L2 ≤ εk ≤ δεk
2k

< δεk = min{∥f − Rϱ(Ψ)∥L2 : Ψ ∈ NNB
Ωεk

,Kεk
,d}.

But in case of M ≤ Ωεk , we would have (as above) that Φ ∈ NNB
M,Kεk

,d ⊂ NNB
Ωεk

,Kεk
,d, which then

yields a contradiction to the preceding inequality. Therefore, we must have

M > Ωεk =
⌈
ε−2(d−1)/β
k

/
[log2(1/εk) · log2(log2(1/εk))]

⌉
≥ ε−2(d−1)/β

k

log2(1/εk) · log2(log2(1/εk))
.

Since M ∈ N was chosen arbitrarily, only subject to the restriction that there is Φ ∈ NNB
M,⌈C0 log2(1/εk)⌉,d

with ∥f − Rϱ(Φ)∥L2 ≤ εk, this implies MB,ϱ,C0
εk (f) > Ωεk , as claimed.
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C Depth matters: Fast approximation needs deep networks

In this section, we provide the proofs for the theorems from Subsection 4.2. In the whole section, ϱ
will always be the ReLU function ϱ(x) = max{0, x}, and all realizations are made using this activation
function.

The overall proof strategy in this section is heavily inspired by Yarotsky [48]: At first, we exclusively
work in dimension d = 1. For this setting, we begin by establishing (in Lemma C.1) a lower bound on
the Lp approximation quality of affine-linear functions to the square function. By locally approximating
a nonlinear C3 function by its Taylor polynomial of degree two, this then implies (see Corollary C.3) a
lower bound on the Lp approximation quality of affine-linear functions to nonlinear C3 functions.

We then move to dimension d > 1 by saying that g : Rd → R is P -piecewise slice affine for some
P ∈ N if each of the “slices” t (→ g(x0 + tv0) for arbitrary x0, v0 ∈ Rd is piecewise affine-linear with
at most P pieces. By applying a “Fubini-type argument”, we lift the one-dimensional lower bounds to
a lower bound for the Lp approximation quality that can be achieved for approximating a nonlinear,
d-dimensional C3 function using P -piecewise slice affine functions, see Proposition C.5.

We then complete the proof (see Theorem C.6) by invoking known results of Telgarsky [47] which
show that realizations of ReLU neural networks are always P -piecewise slice affine, for P ! NL, where
N is the number of neurons of the network, and L is its depth.

The main difference to the results by Yarotsky [48] is that Yarotsky considers approximation in L∞,
while we are interested in approximation in the Lp-sense, with p < ∞. In this case, the reduction of the
d-dimensional case to the one-dimensional case is more involved; see the proof of Proposition C.5.

After this high-level overview, let us turn to the details:

Lemma C.1. There is a universal constant C0 > 0 with the following property: For arbitrary α, a, b ∈ R

with a < b and 1 ≤ p < ∞, we have

inf
β,γ∈R

∥∥α · x2 − (βx+ γ)
∥∥
Lp([a,b];dx)

≥ C0 · |α| · (b− a)2+
1
p .

Proof. For α = 0, the claim is trivial. Next, for α ̸= 0, we have

inf
β,γ∈R

∥∥α · x2 − (βx + γ)
∥∥
Lp([a,b];dx)

= |α| · inf
β,γ∈R

∥∥∥∥x
2 −

(
β

α
x+

γ

α

)∥∥∥∥
Lp([a,b];dx)

= |α| · inf
β′,γ′∈R

∥∥x2 − (β′ · x+ γ′)
∥∥
Lp([a,b];dx)

.

This easily shows that it suffices to consider the case α = 1.
Next, let us consider the case a = 0 and b = 1. By Jensen’s inequality, ∥f∥Lp([0,1]) ≥ ∥f∥L1([0,1]) for

1 ≤ p < ∞, and (b− a)2+
1
p = 1 for arbitrary p, so that it suffices to consider the case p = 1. Next,

consider the space V := span {1, id} ≤ L1 ([0, 1]), which is finite dimensional, and hence closed. Since(
x (→ x2

)
/∈ V , the absolute constant C0 := dist

((
x (→ x2

)
, V
)
is positive. This proves the claim in case

of a = 0 and b = 1.
Finally, for the general case, first note by a straightforward application of the change-of-variables

formula that ∥f∥Lp([a,b]) = (b− a)1/p ·∥f (a+ (b− a) y)∥Lp([0,1];dy) for measurable f : [a, b] → R. Applied
to our specific setting, this implies for arbitrary β, γ ∈ R that

∥∥x2 − (βx + γ)
∥∥
Lp([a,b];dx)

= (b− a)
1
p ·
∥∥∥(a+ (b− a) y)2 − [β (a+ (b− a) y) + γ]

∥∥∥
Lp([0,1];dy)

= (b− a)2+
1
p ·

∥∥∥∥∥y
2 −

[
β − 2a

b− a
y +

βa+ γ − a2

(b− a)2

]∥∥∥∥∥
Lp([0,1];dy)

≥ C0 · (b− a)2+
1
p .

As seen at the beginning of the proof, this yields the claim.

The preceding lemma shows that affine-linear functions cannot approximate the square function too
well. By approximating C3 functions by their Taylor polynomial of degree 2, this implies that C3

functions with nonvanishing second derivative are not approximated too well by linear functions. This
is made precise by the following lemma:

Lemma C.2. Let f ∈ C3 ([0, 1]) with |f ′′ (x)| ≥ c > 0 for all x ∈ [0, 1] and with ∥f ′′′∥sup ≤ C, for some
C > 0. Then, with C0 as in Lemma C.1, we have for arbitrary 1 ≤ p < ∞ that

inf
β,γ∈R

∥f (x) − (βx+ γ)∥Lp([0,1];dx) ≥ min

{
C0

4
· c, C

3
0

8
· c3

C2

}
.
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Proof. Set N := ⌈2/(3C0) · C/c⌉ ∈ N. For i ∈ N + 1 let xi := (i−1)/N ∈ [0, 1]. By Taylor’s theorem, we
know for each i ∈ N and x ∈ (xi, xi+1) that there is some ξx ∈ (xi, x) ⊂ (xi, xi+1) with

f (x) = f (xi) + f ′ (xi) · (x− xi) +
f ′′ (xi)

2
· (x− xi)

2 +
f ′′′ (ξx)

6
· (x− xi)

3

=
f ′′(xi)

2
· x2 + x · [f ′(xi)− xi · f ′′(xi)] +

[
f (xi)−f ′(xi) · xi +

1

2
· f ′′ (xi) · x2

i

]
+

f ′′′(ξx)

6
· (x−xi)

3

=: αi · x2 + βi · x+ γi +
f ′′′ (ξx)

6
· (x− xi)

3 .

Hence, since |f ′′′ (ξx)| ≤ C, we get

∥∥f (x)−
[
αi · x2 + βi · x+ γi

]∥∥
Lp([xi,xi+1];dx)

≤(xi+1−xi)
1
p ·
∥∥f (x)−

[
αi · x2 + βi · x+ γi

]∥∥
L∞([xi,xi+1];dx)

≤ N− 1
p · C

6
·N−3 =

C

6
·N−(3+ 1

p ) .

Therefore, by applying Lemma C.1 and by noting |αi| = |f ′′(xi)/2| ≥ c/2, we get for arbitrary β, γ ∈ R

and 1 ≤ i ≤ N the estimate

∥f (x) − (βx+ γ)∥Lp([xi,xi+1];dx)

≥
∥∥αi · x2 + βi · x+ γi − (βx+ γ)

∥∥
Lp([xi,xi+1];dx)

−
∥∥f (x)−

[
αi · x2 + βi · x+ γi

]∥∥
Lp([xi,xi+1];dx)

≥ c

2
· C0 ·N−(2+ 1

p ) − C

6
·N−(3+ 1

p) =
c

2
· C0 ·N−(2+ 1

p ) ·
(
1− 1

3C0
· C
c
·N−1

)
.

By our choice of N , we have 1/(3C0) · C/c ·N−1 ≤ 1/2, so that ∥f (x)− (βx+ γ)∥Lp([xi,xi+1];dx)
≥ C0/4 · c ·

N−(2+ 1
p ). Hence,

∥f (x) − (βx+ γ)∥Lp([0,1];dx) =

[
N∑

i=1

∥f (x)− (βx+ γ)∥pLp([xi,xi+1];dx)

] 1
p

≥ C0

4
· c ·N−2.

For brevity, set θ := 2/(3C0) · C/c. There are now two cases: First, if θ < 1, then N = 1, so that we
get ∥f (x)− (βx + γ)∥Lp([0,1];dx) ≥ C0/4 · c, i.e., the claim is valid in this case. Finally, if θ ≥ 1, then
N = ⌈θ⌉ ≤ 1 + θ ≤ 2θ, and thus

∥f (x)− (βx + γ)∥Lp([0,1];dx) ≥
C0

4
· c ·N−2 ≥ C0

4
· c · (2θ)−2 =

C0

16
· c ·

(
3C0

2
· c

C

)2

≥ C3
0

8
· c3

C2
,

so that the claim also holds in this case.

The next lemma generalizes the preceding estimate from the interval [0, 1] to general intervals [a, b].

Corollary C.3. Let c, C > 0 be arbitrary and let C0 > 0 as in Lemma C.1. Further, let a, b ∈ R with
0 < b− a < 1

2C0 · c
C .

Then, each function f ∈ C3 ([a, b]) with ∥f ′′′∥sup ≤ C and with |f ′′ (x)| ≥ c for all x ∈ [a, b] satisfies

inf
β,γ∈R

∥f (x)− (βx+ γ)∥Lp([a,b];dx) ≥
C0

4
· c · (b− a)2+

1
p ∀ 1 ≤ p < ∞.

Proof. Define
f̃ : [0, 1] → R, x (→ f (a+ (b− a)x) ,

and note f̃ ∈ C3 ([0, 1]) with |f̃ ′′ (x)| = (b− a)2 · |f ′′ (a+ (b− a)x)| ≥ (b− a)2 · c =: c′, as well as

∥f̃ ′′′∥sup = (b− a)3 · ∥f ′′′∥sup ≤ (b− a)3 · C =: C′.

By our assumptions on a, b, c, C, we then have
(
C3

0

8
· (c′)3

(C′)2

)/(
C0

4
· c′
)
=

C3
0

8
· (b−a)6 · c3

(b−a)6 · C2
· 4

C0
· 1

(b−a)2 · c
=

C2
0

2
· c

2

C2
· 1

(b−a)2
≥
(
C0

2
· c

C
· 1

b−a

)2
>1,

so that Lemma C.2 shows

inf
β,γ∈R

∥∥∥f̃ (x)− (βx+ γ)
∥∥∥
Lp([0,1];dx)

≥ min

{
C0

4
· c′, C

3
0

8
· (c′)3

(C′)2

}

=
C0

4
· c′ = C0

4
· c · (b− a)2 .
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To complete the proof, we note from a direct application of the change-of-variables formula for
arbitrary β, γ ∈ R that

∥f (x)− (βx+ γ)∥Lp([a,b];dx) = (b− a)
1
p ·
∥∥∥f̃ (y)− [β ((b− a) y + a) + γ]

∥∥∥
Lp([0,1];dy)

≥ C0

4
· c · (b− a)2+

1
p .

Before we progress further, we introduce a convenient terminology:

Definition C.4. Let P ∈ N. A function g : Rd → R is called P -piecewise slice affine if for arbitrary
x0, v ∈ Rd the function gx0,v : R → R, t (→ g (x0 + tv) is piecewise affine-linear with at most P pieces.
Precisely, this means that there are −∞ = t0 < t1 < · · · < tP = ∞ such that gx0,v|(ti,ti+1) is affine-linear
for each i ∈ {0, . . . , P − 1}.

Remark. Note that we allow gx0,v to even be discontinuous at the “break points” t1, . . . , tP−1.

Our next result shows that if a P -piecewise slice affine function approximates a nonlinear function
f ∈ C3 (Ω) very well, then P needs to be large. This result will then imply that ReLU networks need
to have a certain minimal depth in order to achieve a given approximation rate for nonlinear functions,
once we show that if g = Rϱ (Φ), then g is P -piecewise slice affine for P ≍ [N (Φ)]L(Φ). Actually, we will
not derive this claim from first principles, but rather use existing results of Telgarsky [47]. But first, let
us consider the case of general P -piecewise slice affine functions:

Proposition C.5. Let Ω ⊂ Rd be nonempty, open, bounded and connected, and let f ∈ C3 (Ω) be
nonlinear, i.e., there do not exist y0 ∈ R and w ∈ Rd with f (x) = y0 + ⟨w, x⟩ for all x ∈ Ω. Then there
is a constant Cf > 0 with the following property:

If g : Rd → R is measurable and P -piecewise slice affine for some P ∈ N, then we have

∥f − g∥Lp(Ω) ≥ Cf · P−(2+ 1
p ) for all 1 ≤ p < ∞.

Proof. Let Hess f = D (∇f) denote the Hessian of f . If we had Hess f ≡ 0, then it would follow by
standard results of multivariable calculus (since Ω is connected) that ∇f is constant, and then that
f (x) = f (x0)+ ⟨∇f (x0) , x− x0⟩ for all x ∈ Ω, where x0 ∈ Ω is fixed, but arbitrary. Since f is assumed
nonlinear, this is impossible.

Hence, let x0 ∈ Ω with Hess f (x0) ̸= 0. Since A := Hess f (x0) is symmetric, the spectral theorem
shows that there is an orthonormal basis (b1, . . . , bd) of Rd that consists of eigenvectors for A, and at
least one of these eigenvectors needs to correspond to a non-zero eigenvalue; by rearranging we can
assume Abd = λ · bd for some λ ∈ R \ {0}. Since Ω is open, there is some ε ∈ (0, 1/2) with Bdε (x0) ⊂ Ω.
Since |⟨Hess f (x0) bd, bd⟩| = |λ| ̸= 0, and since Hess f is continuous, we can possibly shrink ε to achieve

|⟨Hess f (x) bd, bd⟩| ≥ c := |λ|
2 for all x ∈ Bdε (x0). Furthermore, since Bdε (x0) ⊂ Ω is compact, the

constant
C := d3 · sup

x∈Bdε(x0)

max
|α|=3

|∂αf (x)|

is finite. Finally, by again shrinking ε (which can at most shrink C), we can assume 2ε < 1
2C0 · c

C , where
C0 is the constant from Lemma C.1.

Now, for y = (y1, . . . , yd−1) ∈ Rd−1 let us set zy := x0 +
∑d−1

i=1 yibi. Note zy + t · bd ∈ Bdε (x0) for all

y ∈ [−ε, ε]d−1 and t ∈ [−ε, ε]. Therefore, since (b1, . . . , bd) is an orthonormal basis, an application of the
change-of-variables formula and of Fubini’s theorem shows

∥f − g∥pLp(Ω) ≥
∫

Bdε(x0)
|f (x)− g (x)|p dx ≥

∫

[−ε,ε]d−1

∫ ε

−ε
|f (zy + t · bd)− g (zy + t · bd)|p dt dy.

Note that the choice of x0, ε, (b1, . . . , bd) and λ, c, C, C0 are all independent of g and P .

Now, let y ∈ [−ε, ε]d−1 be fixed, but arbitrary. Since g is P -piecewise slice affine, we know that the
map gzy,bd : R → R, t (→ g (zy + t · bd) is piecewise affine-linear, with at most P pieces, i.e., there is a

partition R =
⊎N

i=1 Ii (up to a null-set) into open intervals I1, . . . , IN with N ∈ P such that gzy,bd is
affine-linear on each Ii. Hence, with λ denoting the one-dimensional Lebesgue measure, we conclude

2ε = λ
(⊎N

i=1 (Ii ∩ [−ε, ε])
)
=
∑N

i=1 λ ([−ε, ε] ∩ Ii), so that λ ([−ε, ε] ∩ Ii) ≥ 2ε/N ≥ 2ε/P for some i ∈ N .

Therefore, [−ε, ε]∩Ii ⊃ (ay, by) for certain ay, by ∈ [−ε, ε] with by−ay ≥ 2ε/P . Since gzy,bd is affine-linear
on (ay, by) ⊂ Ii ∩ [−ε, ε], there are thus certain βy, γy ∈ R with

∫ ε

−ε
|f (zy + t · bd)− g (zy + t · bd)|p dt ≥ ∥f (zy + t · bd)− (βyt+ γy)∥pLp([ay,by ];dt)

.
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But with
fy : [ay, by] → R, t (→ f (zy + t · bd)

we have fy ∈ C3 ([ay, by]) and
∣∣f ′′

y (t)
∣∣ = |⟨Hess f (zy + t · bd) · bd, bd⟩| ≥ c for all t ∈ [ay, by] ⊂ [−ε, ε],

since zy + t · bd ∈ Bdε (x0), as we saw above. Finally, by an iterated application of the chain rule, we also
have

∣∣f ′′′
y (t)

∣∣ =

∣∣∣∣∣∣

d∑

i,j,ℓ=1

(bd)i (bd)j (bd)ℓ · (∂i∂j∂ℓf) (zy + t · bd)

∣∣∣∣∣∣
≤ d3 · sup

x∈Bdε(x0)

max
|α|=3

|∂αf (x)| = C,

where we used that |(bd)i| ≤ |bd| = 1 for all i ∈ d. All in all, an application of Corollary C.3 now shows
because of by − ay ≤ 2ε < C0/2 · c/C that

∥f (zy + t · bd)− (βyt+ γy)∥pLp([ay,by ];dt)
≥
[
C0

4
· c · (by − ay)

2+ 1
p

]p
≥
(
C0

4
· c
)p

·
(
2ε

P

)2p+1

.

By putting everything together, and by recalling ε < 1/2 and p ≥ 1, so that (2ε)2p+d ≥ (2ε)(d+2)·p,
we thus arrive at

∥f − g∥pLp(Ω) ≥
∫

[−ε,ε]d−1

∫ ε

−ε
|f (zy + t · bd)− g (zy + t · bd)|p dt dy

≥
∫

[−ε,ε]d−1

(
C0

4
· c
)p

·
(
2ε

P

)2p+1

dy ≥ (2ε)(d+2)p ·
(
C0

4
· c
)p

· P−(1+2p),

which yields the claim if we set Cf := (2ε)d+2 · C0/4 · c. Note that Cf > 0 is indeed independent of g and
P .

By using the results of Telgarsky[47] which show that functions represented by neural ReLU networks

are P -piecewise slice affine for P ≍ [N (Φ)]L(Φ), we can now derive a lower bound on the number of layers
that are needed to achieve a given approximation rate for nonlinear C3 functions:

Theorem C.6. Let Ω ⊂ Rd be nonempty, open, bounded, and connected. Furthermore, let f ∈ C3 (Ω)
be nonlinear. Then there is a constant Cf > 0 satisfying

∥f −Rϱ (Φ)∥Lp(Ω) ≥ Cf · (N (Φ)− 1)−L(Φ)·(2+ 1
p ) ,

∥f −Rϱ (Φ)∥Lp(Ω) ≥ Cf · (M (Φ) + d)−L(Φ)·(2+ 1
p)

for all 1 ≤ p < ∞ and each ReLU neural network Φ with input dimension d and output dimension 1.

Remark. By adapting the given arguments (mostly the proof of Lemma C.2), one can show that the
same claim remains true for f ∈ C2+ε(Ω), with fixed but arbitrary ε > 0. For the sake of brevity, we
omitted this generalization.

Before we give the proof of Theorem C.6, we observe the following corollary:

Corollary C.7. Let Ω ⊂ Rd be nonempty, open, bounded, and connected. Furthermore, let f ∈ C3 (Ω)
be nonlinear. If there are constants C, θ > 0, a null-sequence (εk)k∈N

of positive numbers, and a sequence
(Φk)k∈N

of ReLU neural networks satisfying

∥f −Rϱ (Φk)∥Lp ≤ C · εk and
[
M (Φk) ≤ C · ε−θk or N (Φk) ≤ C · ε−θk

]

for all k ∈ N and some 1 ≤ p < ∞, then

lim inf
k→∞

L (Φk) ≥
(
2 +

1

p

)−1

· 1
θ
.

Proof. Let us assume that the claim is false, i.e., we have lim infk→∞ L (Φk) < (2 + 1/p)−1 · 1/θ. By
switching to a subsequence, we can then assume that there is some δ > 0 with L (Φk) ≤ (2 + 1/p)−1 ·
1/θ − δ =: L for all k ∈ N. Note that 1 ≤ L (Φk) ≤ L.

Next, since εk → 0, and since f ̸= 0 (because f is nonlinear), we have ∥f −Rϱ (Φk)∥Lp < ∥f∥Lp for k
large enough (which we will assume in the following). In particular, Rϱ (Φk) ̸= 0 and hence M (Φk) ≥ 1,
so that M (Φk) + d ≤ (d+ 1) ·M (Φk).

39



Now, there are two cases for (large) k ∈ N: If M (Φk) ≤ C · ε−θk , then the second part of Theorem
C.6 shows

Cf · (1 + d)−L(2+ 1
p ) C−L(2+ 1

p ) · εLθ(2+
1
p )

k ≤ Cf · (1 + d)−L(2+ 1
p ) · [M (Φk)]

−L(2+ 1
p )

≤ Cf · (M (Φk) + d)−L(2+ 1
p )

≤ Cf · (M (Φk) + d)−L(Φk)(2+ 1
p )

≤ ∥f −Rϱ (Φk)∥Lp ≤ C · εk.

(C.1)

If otherwise N (Φk) ≤ C · ε−θk , then the first part of Theorem C.6 shows

Cf · C−L(2+ 1
p ) · εLθ(2+

1
p )

k ≤ Cf · (N (Φk))
−L(2+ 1

p ) ≤ Cf · (N (Φk))
−L(Φk)(2+ 1

p )

≤ Cf · (N (Φk)− 1)−L(Φk)(2+ 1
p ) ≤ ∥f −Rϱ (Φk)∥Lp ≤ C · εk.

(C.2)

At least one of the equations (C.1) or (C.2) holds for infinitely many k ∈ N. Since εk → 0 and εk > 0,
this easily yields Lθ (2 + 1/p) ≥ 1, and hence (2 + 1/p)−1 · θ−1 − δ = L ≥ (2 + 1/p)−1 · θ−1, which is the
desired contradiction.

We close this section with the proof of Theorem C.6.

Proof of Theorem C.6. Step 1: In this step, we show‡ that if Φ is a neural network of depth L and with
N neurons, then Rϱ (Φ) is P -piecewise slice affine with P ≤ (2/L)L · (N − 1)L.

To this end, we first introduce some terminology: As in [47], let us call a continuous function
f : R → R t-sawtooth (with t ∈ N) if f is piecewise affine-linear with at most t pieces, i.e., there
are −∞ = x0 < x1 < · · · < xt = ∞ such that f |(xi−1,xi) is affine-linear for each i ∈ t. Note that there are
no issues at the boundary points of the affine-linear “pieces”, since (in slight contrast to [47]), we assume
f to be continuous. Using this terminology, [47, Lemma 2.3] states that if f, g : R → R are k-sawtooth
and ℓ-sawtooth, respectively, then f + g is k+ ℓ-sawtooth, and f ◦ g is kℓ-sawtooth. Note that the ReLU
ϱ is 2-sawtooth.

Now, let Φ =
((
A(1), b(1)

)
, . . . ,

(
A(L), b(L)

))
be a neural network with d-dimensional input and one-

dimensional input, with L layers and N neurons, i.e., we have A(ℓ) ∈ RNℓ×Nℓ−1 and b(ℓ) ∈ RNℓ , where
N0 = d and NL = 1, and N =

∑L
j=0 Nj. Further, let g := Rϱ (Φ) and let x, v ∈ Rd be arbitrary. We

want to show that gx,v : R → R, t (→ g (x+ t · v) is P -sawtooth, with P ≤ (2/L)L · (N − 1)L. To see this,
inductively define g(0), g(1), . . . , g(L) as follows: g(0) : R → Rd, x (→ x+ t · v,

g(ℓ+1) : R → R
Nℓ+1, t (→ ϱ

(
A(ℓ+1) · g(ℓ) (t) + b(ℓ+1)

)
for 0 ≤ ℓ ≤ L− 2,

and g(L) : R → R, t (→ A(L) · g(L−1) (t) + b(L). We clearly have g(L) = gx,v.

We will show by induction on ℓ ∈ {0, . . . , L} that each component function g(ℓ)i for i ∈ Nℓ is Mℓ-

sawtooth, with Mℓ :=
∏ℓ−1

j=0 2Nj, where (by the convention for empty products) M0 = 1. Indeed, for

ℓ = 0, we have g(0)i (t) = xi + t · vi, which is affine-linear. Hence, g(0)i is M0-sawtooth, since M0 = 1.

For the induction step, assume that all g(ℓ)i , i ∈ Nℓ are Mℓ-sawtooth for some 0 ≤ ℓ ≤ L− 1. In case of
ℓ = L− 1, let θ := idR, and otherwise let θ := ϱ. In either case, we have that θ is 2-sawtooth, and

g(ℓ+1)
i (t) = θ

⎛

⎝b(ℓ+1)
i +

Nℓ∑

j=1

A(ℓ+1)
i,j · g(ℓ)j (t)

⎞

⎠ for t ∈ R and i ∈ Nℓ+1.

But since each g(ℓ)j is Mℓ-sawtooth, so is t (→ A(ℓ+1)
i,j ·g(ℓ)j (t), so that t (→

∑Nℓ

j=1 A
(ℓ+1)
i,j ·g(ℓ)j (t) is (Mℓ+1/2)-

sawtooth, since
∑Nℓ

j=1 Mℓ = Nℓ ·Mℓ = 1/2Mℓ+1. Thus, since θ is 2-sawtooth, g(ℓ+1)
i is Mℓ+1-sawtooth, as

claimed.
All in all, we have shown that gx,v = g(L) is ML-sawtooth, where ML =

∏L−1
j=0 2Nj = 2L ·

∏L−1
j=0 Nj .

Now, by concavity of the natural logarithm and because of NL = 1, we have

ln

(
N (Φ)− 1

L

)
= ln

⎛

⎝ 1

L

L−1∑

j=0

Nj

⎞

⎠ ≥ 1

L

L−1∑

j=0

lnNj =
1

L
· ln

⎛

⎝
L−1∏

j=0

Nj

⎞

⎠ ,

‡Essentially, this is already contained in the statement of [47, Lemma 2.1], but Telgarsky uses a slightly different
definition of neural networks than we do. Therefore, and for the convenience of the reader, we provide a proof.
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and hence
∏L−1

j=0 Nj ≤ eL·ln((N(Φ)−1)/L) = ((N(Φ)−1)/L)L, so that all in all ML ≤ (2/L)L · (N (Φ)− 1)L.

Step 2: Now, an application of Proposition C.5 yields a constant C(0)
f > 0 (independent of Φ, L, p)

satisfying

∥f−Rϱ (Φ)∥Lp ≥ C(0)
f ·M−(2+ 1

p)
L ≥ C(0)

f ·
(
L

2

)L(2+ 1
p )
·(N (Φ)− 1)−L(2+ 1

p )≥ 1

8
·C(0)

f ·(N (Φ)− 1)−L(2+ 1
p) .

Here, the estimate (L/2)L(2+1/p) ≥ 1/8 can be easily seen to be true by distinguishing the cases L = 1 and

L ≥ 2, and by noting 2 ≤ 2 + 1/p ≤ 3. This yields the first claim, with Cf = C(0)
f /8, since L = L (Φ).

Step 3: Finally, to prove the second claim, recall from Lemma E.1 that there is a neural network
Φ′ with Rϱ (Φ) = Rϱ (Φ′) and such that M (Φ′) ≤ M (Φ) and N (Φ′) ≤ M (Φ′) + d + 1, as well as
L (Φ′) ≤ L (Φ). By applying the first claim of the current theorem to Φ′ instead of Φ (and with
L′ = L (Φ′) instead of L = L (Φ)), we get

∥f −Rϱ (Φ)∥Lp = ∥f −Rϱ (Φ
′)∥Lp ≥ Cf · (N (Φ′)− 1)

−L′(2+ 1
p ) ≥ Cf · (N (Φ′)− 1)

−L(2+ 1
p )

≥ Cf · (M (Φ′) + d)
−L(2+ 1

p) ≥ Cf · (M (Φ) + d)−L·(2+ 1
p ) .

D An estimate of intermediate derivatives

Lemma D.1. For d ∈ N, σ ∈ (0, 1] and f ∈ C([0, 1]d), define

Lipσ(f) :=
sup

x,y∈[0,1]d

x ̸=y

|f(x)− f(y)|
|x− y|σ ∈ [0,∞].

Then, for n ∈ N0, d ∈ N and σ ∈ (0, 1] there is a constant C = C(n, d,σ) > 0 such that every
f ∈ Cn([0, 1]d) satisfies

∥∂γf∥sup ≤ C ·

⎛

⎝∥f∥sup +
∑

|α|=n

Lipσ(∂
αf)

⎞

⎠ for all γ ∈ N
d
0 with |γ| ≤ n.

Proof. Note: This proof is heavily based on that of [1, Lemmas 4.10 and 4.12], where a related, but
different estimate is established.

Step 1: We claim for f ∈ C1([0, 1]d) and arbitrary N ∈ N that

∥∂ℓf∥sup ≤ 4 ·N 1
σ · ∥f∥sup +

1

N
· Lipσ(∂ℓf) for all ℓ ∈ {1, . . . , d}. (D.1)

By symmetry (i.e., by relabeling the coordinates), we can assume ℓ = 1. Define K := ⌈N1/σ⌉, and let
x = (x1, . . . , xd) ∈ [0, 1]d be arbitrary. Choose i ∈ {0, . . . ,K − 1} with x1 ∈ [i/K, (i+1)/K]. By the mean
value theorem, there is some ξ ∈ (i/K, (i+1)/K) with

|∂1f(ξ, x2, . . . , xd)| =

∣∣∣∣∣
f( i+1

K , x2, . . . , xd)− f( i
K , x2, . . . , xd)

i+1
K − i

K

∣∣∣∣∣ ≤ 2K · ∥f∥sup ≤ 4 ·N 1
σ · ∥f∥sup,

where we used K = ⌈N1/σ⌉ ≤ 1+N1/σ ≤ 2 ·N1/σ. Since |(ξ, x2, . . . , xd)−x| ≤ |ξ−x1| ≤ K−1 ≤ N−1/σ,
the preceding estimate implies

|∂1f(x)| ≤ |∂1f(x)− ∂1f(ξ, x2, . . . , xd)|+ |∂1f(ξ, x2, . . . , xd)|

≤ (N− 1
σ )σ · Lipσ(∂1f) + 4 ·N 1

σ · ∥f∥sup = 4 ·N 1
σ · ∥f∥sup +

1

N
· Lipσ(∂1f),

as claimed (since we assumed ℓ = 1).

Step 2: For brevity, set |f |ℓ :=
∑

|α|=ℓ ∥∂αf∥sup and |f |ℓ,σ :=
∑

|α|=ℓ Lipσ(∂
αf) ∈ [0,∞] for ℓ ∈ N0

and f ∈ Cℓ([0, 1]d). In this step, we show by induction on k ∈ N0 that for each k ∈ N0 and N ∈ N, there
is a constant Cσ,d,k,N > 0 with

|f |k ≤ 1

N
· |f |k,σ + Cσ,d,k,N · ∥f∥sup for all f ∈ Ck([0, 1]d). (D.2)
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Before we begin with the induction, we first show the following estimate:

|f |k,σ ≤ d2 · |f |k+1 for all k ∈ N0 and f ∈ Ck+1([0, 1]d). (D.3)

To prove Equation (D.3), first note because of diam([0, 1]d) =
√
d that each Lipschitz continuous function

f ∈ C([0, 1]d) satisfies |f(x)−f(y)| ≤ |x−y|σ · |x−y|1−σ ·Lip1(f) ≤ |x−y|σ ·d(1−σ)/2 ·Lip1(f). Therefore,
each f ∈ C1([0, 1]d) fulfills Lipσ(f) ≤ d(1−σ)/2 · Lip1(f) ≤ d(1−σ)/2 · ∥∇f∥sup ≤ d ·

∑d
ℓ=1 ∥∂ℓf∥sup, which

finally yields for f ∈ Ck+1([0, 1]d) that

|f |k,σ =
∑

|α|=k

Lipσ(∂
αf) ≤ d

d∑

ℓ=1

∑

|α|=k

∥∂ℓ∂αf∥sup ≤ d2 · |f |k+1,

which is nothing but (D.3).
Now we properly begin with the proof of Equation (D.2). For k = 0, Equation (D.2) is trivial with

Cσ,d,0,N = 1, since |f |0 = ∥f∥sup. For k = 1, Equation (D.2) is a consequence of Equation (D.1), which
yields

|f |k = |f |1 =
d∑

ℓ=1

∥∂ℓf∥sup ≤ 4 ·N 1
σ · ∥f∥sup ·

d∑

ℓ=1

1 +
1

N

d∑

ℓ=1

Lipσ(∂ℓf)

=
1

N
· |f |1,σ + 4d ·N 1

σ · ∥f∥sup =
1

N
· |f |k,σ + 4d ·N 1

σ · ∥f∥sup,

so that Cσ,d,1,N = 4d ·N1/σ makes Equation (D.2) true for k = 1.
For the induction step, note that if f ∈ Ck+1([0, 1]d), and if we apply the case k = 1 (with M instead

of N) to each of the partial derivatives ∂αf with |α| = k, then we get

|f |k+1 ≤
∑

|α|=k

|∂αf |1 ≤
∑

|α|=k

(
1

M
|∂αf |1,σ + Cσ,d,M · ∥∂αf∥sup

)

(∗)
≤ dk

M
· |f |k+1,σ + Cσ,d,M · |f |k

(by induction) ≤ dk

M
· |f |k+1,σ + Cσ,d,M ·

(
1

N
· |f |k,σ + Cσ,d,k,N · ∥f∥sup

)

(by Eq. (D.3) since f∈Ck+1([0,1]d)) ≤ dk

M
· |f |k+1,σ + Cσ,d,M ·

(
d2

N
· |f |k+1 + Cσ,d,k,N · ∥f∥sup

)
,

(D.4)

where M,N ∈ N can be chosen arbitrarily. In the above calculation, the step marked with (∗) used the

elementary estimates |∂αf |1,σ =
∑d
ℓ=1 Lipσ(∂ℓ∂

αf) ≤
∑

|γ|=k+1 Lipσ(∂
γf) = |f |k+1,σ, which is valid for

all α ∈ Nd
0 with |α| = k, and |{α ∈ Nd

0 : |α| = k}| ≤ dk.
Finally, note that (D.2) is trivially satisfied (for k + 1 instead of k) if |f |k+1,σ = ∞. Therefore, we

can assume |f |k+1,σ < ∞. If we now choose N = N(σ, d,M) ∈ N to satisfy N ≥ 1 + 2d2Cσ,d,M , so that

Cσ,d,M · d2

N ≤ 1
2 , then we get from Equation (D.4) by rearranging that

|f |k+1 ≤ 2 ·
(
dk

M
· |f |k+1,σ + Cσ,d,MCσ,d,k,N · ∥f∥sup

)
≤ 2dk

M
· |f |k+1,σ + C′

σ,d,k,M · ∥f∥sup.

Since M ∈ N can be chosen arbitrarily, this establishes Equation (D.2) for k + 1 instead of k, and thus
completes the induction.

Step 3: For arbitrary k ∈ N, we prove by induction on 0 ≤ j ≤ k − 1 that there is a constant
Cσ,d,k,j > 0 with

|f |k−j ≤ |f |k,σ + Cσ,d,k,j · ∥f∥sup for all f ∈ Ck([0, 1]d). (D.5)

For j = 0, this is a direct consequence of Equation (D.2) (with N = 1). For the induction step, assume
that (D.5) holds for some 0 ≤ j ≤ k − 2, and note

|f |k−(j+1) = |f |k−j−1

(Eq. (D.2) with k−j−1 instead of k and with N=d2) ≤ 1

d2
· |f |k−j−1,σ + C′

σ,d,k,j · ∥f∥sup

(Eq. (D.3) since f∈Ck⊂C(k−j−1)+1) ≤ |f |k−j + C′
σ,d,k,j · ∥f∥sup

(by induction) ≤ |f |k,σ + (Cσ,d,k,j + C′
σ,d,k,j) · ∥f∥sup.
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Step 4: In this step, we prove the actual claim. For n = 0, this is trivial, so that we can assume
n ≥ 1. Thus, let f ∈ Cn([0, 1]d), and let γ ∈ Nd

0 with |γ| ≤ n. For γ = 0, the claim is trivial, so that we
can assume 1 ≤ |γ| ≤ n. Hence, j := n− |γ| satisfies 0 ≤ j ≤ n− 1. Therefore, we can apply Step 3 with
k = n to conclude

∥∂γf∥sup ≤ |f ||γ| = |f |n−j ≤ |f |n,σ + Cσ,d,n,j · ∥f∥sup.

This easily implies the claim, with C = max{1, max{Cσ,d,n,j : 0 ≤ j ≤ n− 1}}.

E Reducing the number of neurons

In this short technical appendix, we prove that for each neural network Φ with one-dimensional output
and d-dimensional input, one can assume essentially without loss of generality that N(Φ) ≤ M(Φ)+d+1.
This observation is important for the proof of Lemma B.4, where we encode the functions represented
by a class of neural networks using a fixed number of bits. It is also used in the proof of Theorem C.6.

Lemma E.1. Let ϱ : R → R with ϱ(0) = 0. Then, for every neural network Φ with input dimension
d ∈ N and output dimension 1, there is a neural network Φ′ with the same input and output dimension
and with the following additional properties:

• We have Rϱ(Φ′) = Rϱ(Φ).

• We have N(Φ′) ≤ M(Φ′) + d+ 1.

• We have M(Φ′) ≤ M(Φ) and L(Φ′) ≤ L(Φ).

• If I ⊂ R contains the values of all non-zero weights of Φ, then the same holds for Φ′.

Proof. Assume that N(Φ) > M(Φ) + d + 1, otherwise Φ itself admits all properties of the statement of
the lemma. We show that in this case one can always find a network Φ′ with N(Φ′) < N(Φ) and such
that Φ′ has the same input and output dimension as Φ, such that M(Φ′) ≤ M(Φ), L(Φ′) ≤ L(Φ) and
Rϱ(Φ′) = Rϱ(Φ), and such that if I ⊂ R contains the values of all non-zero weights of Φ, then the same
holds for Φ′. Iterating this observation yields the result.

For n1, n2 ∈ N and A ∈ Rn1×n2 , as well as i ∈ {1, . . . , n1} we denote (in case of n1 > 1) by
Aî ∈ R(n1−1)×n2 the matrix resulting from removing the i-th row of A. Likewise, for i ∈ {1, . . . , n2} we

write (in case of n2 > 1) Aî for the matrix resulting from removing the i-th column of A. Similarly, for
b ∈ Rn1 with n1 > 1, we denote by bî ∈ Rn1−1 the vector resulting from removing the i-th entry of b.

Let Φ = ((A1, b1), . . . , (AL, bL)) with Aℓ ∈ RNℓ×Nℓ−1 and bℓ ∈ RNℓ for ℓ ∈ {1, . . . , L}. Since

L∑

ℓ=1

Nℓ − 1 = N(Φ)− d− 1 > M(Φ) =
L∑

ℓ=1

(∥Aℓ∥ℓ0 + ∥bℓ∥ℓ0) ,

there exist more rows of [A1, b1], . . . , [AL, bL] than non-zero entries in all these matrices. Hence, there
exists ℓ ∈ {1, . . . , L} and i ∈ {1, . . . , Nℓ} such that the i-th row of Aℓ and the i-th entry of bℓ vanish. In
fact, let us choose ℓ ∈ {1, . . . , L} maximal with the property that there is some i ∈ {1, . . . , Nℓ} such that
the i-th row of Aℓ and the i-th entry of bℓ vanish. Now we distinguish three cases:

Case 1: If Nℓ > 1 (so that in particular ℓ < L, since NL = 1), then we set

Φ′ := ((A1, b1), . . . , (Aℓ−1, bℓ−1), ((Aℓ )̂i, (bℓ)̂i), ((Aℓ+1)
î, bℓ+1), (Aℓ+2, bℓ+2), . . . , (AL, bL)).

We have that (Aℓ+1)îxî = Aℓ+1x for all x = (x1, . . . , xNℓ) ∈ RNℓ with xi = 0, and furthermore (ϱ(Aℓx+
bℓ))̂i = ϱ((Aℓ )̂i x+(bℓ )̂i) for all x ∈ RNℓ−1 . Since ϱ(0) = 0 we see that the i-th entry of ϱ(Aℓx+bℓ) is zero,
for arbitrary x ∈ RNℓ−1 . All in all, these observations show Rϱ(Φ′) = Rϱ(Φ). Moreover, N(Φ′) < N(Φ),
M(Φ′) ≤ M(Φ), and L(Φ′) = L(Φ) follow from the construction. The statement regarding the values of
the nonzero weights being contained in I is also clearly satisfied.

Case 2: If Nℓ = 1, but ℓ > 1, then we have Aℓ = 0 and bℓ = 0. We set Ã1 := 0 ∈ R1×d, b̃1 := 0 ∈ R.
If ℓ < L we set

Φ′ := ((Ã1, b̃1), (Aℓ+1, bℓ+1), . . . , (AL, bL)).

By construction and because of ϱ(0) = 0, we have Rϱ(Φ′) = Rϱ(Φ) and N(Φ′) < N(Φ), as well as
M(Φ′) ≤ M(Φ) and L(Φ′) ≤ L(Φ). The statement regarding the values of the nonzero weights being
contained in I is also clearly satisfied.
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If ℓ = L, then Rϱ(Φ) = 0. In this case, set

Φ′ := ((Ã1, b̃1)).

We then haveN(Φ′) = d+1 ≤ M(Φ)+d+1 < N(Φ), as well asM(Φ′) = 0 ≤ M(Φ) and L(Φ′) = 1 ≤ L(Φ).
Finally, since Φ′ only has weights with value zero, the statement regarding the values of the nonzero
weights being contained in I is trivially satisfied.

Case 3: If ℓ = 1 and N1 = 1, then A1 = b1 = 0. Thus we have

L∑

ℓ=2

Nℓ =
L∑

ℓ=1

Nℓ − 1 = N(Φ)− d− 1 > M(Φ) =
L∑

ℓ=2

(∥Aℓ∥ℓ0 + ∥bℓ∥ℓ0),

and therefore there exists some ℓ′ ∈ {2, . . . , L} and some j ∈ {1, . . . , Nℓ′} such that the j-th row of Aℓ′
and the j-th entry of bℓ′ vanish. This contradicts the maximality of ℓ, so that this case cannot occur.
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